World!Of
Numbers
HOME plate
WON |
Various
Palindromic Number Records
rood Introduction rood Various Websources rood
rood Palindromic Triangles rood Palindromic Squares


Palindromic Polygonal Sporadic Number Record Table

General formula for n-gonal is x/2[(n–2)x–(n–4)]

Patrick De Geest
& R. Xiao's CUDApalin
September 18, 2023
TRIANGLE3-gonalbase = 1160435589776671713726420981475132
palindrome6733053790101659583793681919514415919186397385956101097350337662
Patrick De Geest
& R. Xiao's CUDApalin
July 5, 2024
SQUARE4-gonalbase = 3134682829720966004526884212099223335
palindrome982623644294744275088611239676071787170676932116880572447492446326289 69
Patrick De Geest
& R. Xiao's CUDApalin
September 24, 2024
PENTA5-gonalbase = 838090587527523338618545102628
palindrome10535937493533438874744700115110074474788343353947395350157
Patrick De Geest
& R. Xiao's CUDApalin
September 18, 2023
HEXA6-gonalbase = 580217794888335856863210490737631
palindrome6733053790101659583793681919514415919186397385956101097350337662
Patrick De Geest
& R. Xiao's CUDApalin
September 25, 2024
HEPTA7-gonalbase = 1415803049861041426731372743029
palindrome50112456899895663907614190136310914167093665989986542110557
Patrick De Geest
& R. Xiao's CUDApalin
September 26, 2024
OCTA8-gonalbase = 731053454268482664828331214328
palindrome16033174589936414249875039314139305789424146399854713306157
Patrick De Geest
& R. Xiao's CUDApalin
September 27, 2024
NONA9-gonalbase = 532262706211300750684666867828
palindrome9915625594818210915310330035530033013519012818495526519956


Various Palindromic Sporadic Numbers Record Table


Patrick De Geest
& R. Xiao's CUDApalin
June 24, 2023
PRONICn(n+1)base = 54255210708855495084425789684330
palindrome29436278890623079933950908088668808090593399703260988726349260
Patrick De Geest
& R. Xiao's CUDApalin
October 5, 2024
Q-PRONICn(n+2)base = 2976995667134247960520320861629
palindrome88625032021360860825631870563650781365280680631202305268857
Patrick De Geest
& R. Xiao's CUDApalin
October 5, 2024
SQUADD1n^2+1base = 1564240861750197874515157322929
palindrome24468494735690016598667161475741617668956100965374948644257
Patrick De Geest
& R. Xiao's CUDApalin
October 8, 2024
SQUDEC2n^2–2base = 2091512618201828773802577685629
palindrome43744250320974687782078529946499258702877864790230524473457
Patrick De Geest
& R. Xiao's CUDApalin
October 6, 2024
QO-SQRn^2+(n+1)base = 1862062148491212804009825479329
palindrome34672754448437114421605673091903765061244117348444572764357
Patrick De Geest
& R. Xiao's CUDApalin
Jul 26, 2023
QU-SQRn+(n+1)^2base = 302045497563515132545037480328
palindrome912314825983914258707227459395472270785241938952841321955


Various Non Quadratic Palindromic Numbers Record Table


Patrick De Geest
-- -- ----
TETRA(n)(n+1)(n+2)/6base = 3363
palindrome63787367
Charles Trigg
-- -- 1961
CUBEn^3base = 22014
palindrome1066252660111


Contributions


These world records were achieved using CUDA code written by Robert Xiao and no longer
on Rust. Recently he generalized the program to handle arbitrary quadratics.
CUDA is a programming language, or more properly a programming toolkit,
for writing software to run on GPUs rather than CPUs. It runs about 50 times faster on our
GPUs though the logic of the code follows the Rust version closely.
I asked Robert now that his CUDA is running at warp speed how far it would reach.
He answered that as for 70 digits the time estimate on that is around ~400 days on one of
our GPUs. 60 digits is about two days of GPU time, and it’ll go up by a factor of 10 every 4 digits.
Doable but it’ll be a pretty decent power bill :) “Maybe we could get some palindrome enthusiasts
together”, as David Griffeath put it, “and get a distributed computation going.”
The program is very amenable to divide-and-conquer approaches.


Patterns arising in the CUDApalin parameters for the odd polygonals

Pattern ODD caseChange of variablesCUDApalin parameters Pattern EVEN caseChange of VariablesCUDApalin parameters
trianglen = 2 * m + 1
A B C   2 3 1 
 trianglen = 2 * m + 2
A B C   2 5 3 
pentan = 2 * m + 1
A B C   6 5 1 
 pentan = 2 * m + 2
A B C   6 11 5 
heptan = 2 * m + 1
A B C   10 7 1 
 heptan = 2 * m + 2
A B C   10 17 7 
nonan = 2 * m + 1
A B C   14 9 1 
 nonan = 2 * m + 2
A B C   14 23 9 

So for the hendeca (etc.) case one has just to extend the previous obvious patterns showing up in the parameters.

The sequence for A_odd is 2, 6, 10, 14, ... [+ 4]
The sequence for B_odd is 3, 5, 7, 9, ... [+ 2]
The sequence for C_odd is 1, 1, 1, 1, ... [+ 0]

The sequence for A_even is 2, 6, 10, 14, ... [+ 4]
The sequence for B_even is 5, 11, 17, 23, ... [+ 6]
The sequence for C_even is 3, 5, 7, 9, ... [+ 2]

Of course there is also a pattern for the even polygonals

Pattern ODD/EVEN caseChange of variablesCUDApalin parameters
squaren = m + 1
A B C   1 2 1 
hexan = m + 1
A B C   2 3 1 
octan = m + 1
A B C   3 4 1 
decan = m + 1
A B C   4 5 1 

So for the dodeca (etc.) case one has just to extend the previous obvious patterns showing up in the parameters.

The sequence for A_odd/even is 1, 2, 3, 4, ... [+ 1]
The sequence for B_odd/even is 2, 3, 4, 5 ... [+ 1]
The sequence for C_odd/even is 1, 1, 1, 1, ... [+ 0]










[up TOP OF PAGE]


( © All rights reserved ) - Last modified : October 8, 2024.

Patrick De Geest - Belgium flag - Short Bio - Some Pictures
E-mail address : pdg@worldofnumbers.com