Introduction
Palindromic numbers are numbers which read the same from
left to right (forwards)
as from the right to left (backwards)
Here are a few random examples : 7 , 3113 , 44611644
Go directly to the Palindromic cubes in bases 2 to 17 tables
Go directly to the Base 16 topic
Palindromic cubes in bases 2 to 17
Index Nr
Decimal equivalent of numbers whose cube in base 2 is a palindrome L root 10
L cube 10
L base 2
Next > 10^8
2 1 1 1 1
1 0 1 1 1
Index Nr
Decimal equivalent of numbers whose cube in base 3 is a palindrome L root 10
L cube 10
L base 3
Next > 10^10
3 Prime! 21 1 2
2 1 1 1 1
1 0 1 1 1
Index Nr
Decimal equivalent of numbers whose cube in base 4 is a palindromeA046231 | A046232 L root 10
L cube 10
L base 4
Next > 10^10
18 4294967297 10 29 49
17 1073741825 10 28 46
16 268435457 9 26 43
15 67108865 8 24 40
14 16777217 8 22 37
13 4194305 7 20 34
12 1048577 7 19 31
11 262145 6 17 28
10 Prime! 655375 15 25
9 16385 5 13 22
8 4097 4 11 19
7 1025 4 10 16
6 Prime! 2573 8 13
5 65 2 6 10
4 Prime! 172 4 7
3 Prime! 51 3 4
2 1 1 1 1
1 0 1 1 1
Index Nr
Decimal equivalent of numbers whose cube in base 5 is a palindromeA046233 | A046234 L root 10
L cube 10
L base 5
(Recalc) Next > 10^10
23 476837158203126 15 45 64
22 95367431640626 14 42 61
21 19073486328126 14 40 58
20 3814697265626 13 38 55
19 762939453126 12 36 52
18 152587890626 12 34 49
17 30517578126 11 32 46
16 6103515626 10 30 43
15 1220703126 10 28 40
14 244140626 9 26 37
13 48828126 8 24 34
12 9765626 7 21 31
11 1953126 7 19 28
10 390626 6 17 25
9 78126 5 15 22
8 15626 5 13 19
7 3126 4 11 16
6 626 3 9 13
5 126 3 7 10
4 26 2 5 7
3 6 1 3 4
2 1 1 1 1
1 0 1 1 1
Index Nr
Decimal equivalent of numbers whose cube in base 6 is a palindromeA046235 | A046236 L root 10
L cube 10
L base 6
Next > 10^10
15 2176782337 10 29 37
14 860627456 9 27 35
13 362797057 9 26 34
12 60466177 8 24 31
11 10077697 8 22 28
10 1679617 7 19 25
9 279937 6 17 22
8 46657 5 15 19
7 7777 4 12 16
6 Prime! 12974 10 13
5 217 3 8 10
4 Prime! 372 5 7
3 Prime! 71 3 4
2 1 1 1 1
1 0 1 1 1
Index Nr
Decimal equivalent of numbers whose cube in base 7 is a palindromeA046237 | A046238 L root 10
L cube 10
L base 7
Next > 10^10
36 7909306976 10 30 36
35 3954653488 10 29 35
34 1977326744 10 28 34
33 1129901000 10 28 33
32 564950500 9 27 32
31 282475250 9 26 31
30 161414432 9 25 30
29 80707216 8 24 29
28 40353608 8 23 28
27 23059208 8 23 27
26 11529604 8 22 26
25 5764802 7 21 25
24 3294176 7 20 24
23 1647088 7 19 23
22 823544 6 18 22
21 470600 6 18 21
20 235300 6 17 20
19 117650 6 16 19
18 67232 5 15 18
17 33616 5 14 17
16 16808 5 13 16
15 9608 4 12 15
14 4804 4 12 14
13 2402 4 11 13
12 1376 4 10 12
11 688 3 9 11
10 344 3 8 10
9 200 3 7 9
8 100 3 7 8
7 50 2 6 7
6 16 2 4 5
5 8 1 3 4
4 4 1 2 3
3 Prime! 21 1 2
2 1 1 1 1
1 0 1 1 1
Index Nr
Decimal equivalent of numbers whose cube in base 8 is a palindromeA046239 | A046240 L root 10
L cube 10
L base 8
(Recalc) Next > 10^10
21 68719738881 11 33 37
20 68719476737 11 33 37
19 8589934593 10 30 34
18 1073774593 10 28 31
17 1073741825 10 28 31
16 134217729 9 25 28
15 16781313 8 22 25
14 16777217 8 22 25
13 2097153 7 19 22
12 Prime! 2626576 17 19
11 262145 6 17 19
10 32769 5 14 16
9 4161 4 11 13
8 4097 4 11 13
7 513 3 9 10
6 Prime! 732 6 7
5 65 2 6 7
4 9 1 3 4
3 Prime! 31 2 2
2 1 1 1 1
1 0 1 1 1
Index Nr
Decimal equivalent of numbers whose cube in base 9 is a palindromeA046241 | A046242 L root 10
L cube 10
L base 9
(Recalc) Next > 10^10
20 31381059610 11 32 34
19 3486843451 10 29 31
18 3486784402 10 29 31
17 387420490 9 26 28
16 43053283 8 23 25
15 43046722 8 23 25
14 4782970 7 21 22
13 532171 6 18 19
12 531442 6 18 19
11 59050 5 15 16
10 6643 4 12 13
9 6562 4 12 13
8 730 3 9 10
7 91 2 6 7
6 82 2 6 7
5 38 2 5 5
4 10 2 4 4
3 Prime! 21 1 1
2 1 1 1 1
1 0 1 1 1
Index Nr
Decimal equivalent of numbers whose cube in base 11 is a palindromeA046243 | A046244 L root 10
L cube 10
L base 11
Next > 10^10
30 2572306584 10 29 28
29 2377434984 10 29 28
28 2358123384 10 29 28
27 2357947692 10 29 28
26 233846064 9 26 25
25 216130564 9 26 25
24 214521264 9 25 25
23 214373523 9 25 25
22 214358882 9 25 25
21 21258744 8 22 22
20 19648344 8 22 22
19 19503144 8 22 22
18 19487172 8 22 22
17 1932624 7 19 19
16 Prime! 17728937 19 19
15 1771562 7 19 19
14 175704 6 16 16
13 162504 6 16 16
12 161052 6 16 16
11 15984 5 13 13
10 14763 5 13 13
9 14642 5 13 13
8 1332 4 10 10
7 133 3 7 7
6 122 3 7 7
5 12 2 4 4
4 Prime! 71 3 3
3 Prime! 21 1 1
2 1 1 1 1
1 0 1 1 1
Index Nr
Decimal equivalent of numbers whose cube in base 12 is a palindromeA046245 | A046246 L root 10
L cube 10
L base 12
Next > 10^10
29 5589762061 10 30 28
28 5195612305 10 30 28
27 5160049921 10 30 28
26 5159780353 10 30 28
25 465813517 9 27 25
24 432967825 9 26 25
23 430232257 9 26 25
22 430002433 9 26 25
21 429981697 9 26 25
20 38817805 8 23 22
19 36080785 8 23 22
18 35854273 8 23 22
17 35831809 8 23 22
16 3234829 7 20 19
15 2987713 7 20 19
14 2985985 7 20 19
13 269581 6 17 16
12 250705 6 17 16
11 248833 6 17 16
10 22477 5 14 13
9 20881 5 13 13
8 20737 5 13 13
7 1729 4 10 10
6 Prime! 1573 7 7
5 145 3 7 7
4 Prime! 132 4 4
3 Prime! 21 1 1
2 1 1 1 1
1 0 1 1 1
Index Nr
Decimal equivalent of numbers whose cube in base 13 is a palindromeA046247 | A046248 L root 10
L cube 10
L base 13
Next > 10^10
27 878479252 9 27 25
26 820557700 9 27 25
25 816104212 9 27 25
24 815759283 9 27 25
23 815730722 9 27 25
22 67575340 8 24 22
21 63119980 8 24 22
20 62779276 8 24 22
19 62748518 8 24 22
18 5198116 7 21 19
17 4855540 7 21 19
16 4829007 7 21 19
15 4826810 7 21 19
14 399868 6 17 16
13 373660 6 17 16
12 371294 6 17 16
11 30772 5 14 13
10 28731 5 14 13
9 28562 5 14 13
8 2380 4 11 10
7 2198 4 11 10
6 183 3 7 7
5 170 3 7 7
4 14 2 4 4
3 Prime! 21 1 1
2 1 1 1 1
1 0 1 1 1
Index Nr
Decimal equivalent of numbers whose cube in base 14 is a palindromeA046249 | A046250 L root 10
L cube 10
L base 14
Next > 10^10
31 1581240991 10 28 25
30 1581202575 10 28 25
29 1483318789 10 28 25
28 Prime! 147636804110 28 25
27 1476329625 10 28 25
26 1475827473 10 28 25
25 1475789057 10 28 25
24 112943055 9 25 22
23 105951525 9 25 22
22 105454665 9 25 22
21 105413505 9 25 22
20 Prime! 80701197 21 19
19 8067375 7 21 19
18 7568149 7 21 19
17 7532281 7 21 19
16 7529537 7 21 19
15 576255 6 18 16
14 540765 6 18 16
13 537825 6 18 16
12 41175 5 14 13
11 38613 5 14 13
10 38417 5 14 13
9 2955 4 11 10
8 2745 4 11 10
7 Prime! 4613 8 7
6 Prime! 2113 7 7
5 Prime! 1973 7 7
4 15 2 4 4
3 Prime! 21 1 1
2 1 1 1 1
1 0 1 1 1
Index Nr
Decimal equivalent of numbers whose cube in base 15 is a palindromeA046251 | A046252 L root 10
L cube 10
L base 15
Next > 10^10
44 2733800641 10 29 25
43 2733750016 10 29 25
42 2574281476 10 29 25
41 Prime! 256370400110 29 25
40 2563653376 10 29 25
39 2562941251 10 29 25
38 2562890626 10 29 25
37 1366875008 10 28 24
36 683437504 9 27 23
35 182250016 9 25 22
34 171618976 9 25 22
33 170913376 9 25 22
32 170859376 9 25 22
31 91125008 8 24 21
30 45562504 8 23 20
29 12153391 8 22 19
28 12150016 8 22 19
27 11441476 8 22 19
26 11394001 8 22 19
25 11390626 8 22 19
24 6075008 7 21 18
23 3037504 7 20 17
22 810016 6 18 16
21 762976 6 18 16
20 759376 6 18 16
19 405008 6 17 15
18 202504 6 16 14
17 54016 5 15 13
16 50851 5 15 13
15 50626 5 15 13
14 27008 5 14 12
13 13504 5 13 11
12 3616 4 11 10
11 3376 4 11 10
10 1808 4 10 9
9 904 3 9 8
8 Prime! 2413 8 7
7 226 3 8 7
6 16 2 4 4
5 8 1 3 3
4 4 1 2 2
3 Prime! 21 1 1
2 1 1 1 1
1 0 1 1 1
Index Nr
Decimal equivalent of numbers whose cube in base 16 is a palindromeA029735 | A029736 L root 10
L cube 10
L base 16
(Recalc) Next > 10^10
49 1168499544081 13 37 31
48 1168247947281 13 37 31
47 1168232153105 13 37 31
46 1168231104529 13 37 31
45 1104075034881 13 37 31
44 1103807643905 13 37 31
43 1103806595329 13 37 31
42 1099781115905 13 37 31
41 1099780067329 13 37 31
40 1099529519105 13 37 31
39 1099528470529 13 37 31
38 1099512676353 13 37 31
37 1099511627777 13 37 31
36 73014444049 11 33 28
35 68987912449 11 33 28
34 68736258049 11 33 28
33 68720590849 11 33 28
32 68719476737 11 33 28
31 4563468305 10 29 25
30 4563402769 10 29 25
29 4311744769 10 29 25
28 4296085505 10 29 25
27 4296019969 10 29 25
26 4295032833 10 29 25
25 4294967297 10 29 25
24 285212689 9 26 22
23 269484289 9 26 22
22 268505089 9 26 22
21 268435457 9 26 22
20 17829905 8 22 19
19 17825809 8 22 19
18 16847105 8 22 19
17 16843009 8 22 19
16 16781313 8 22 19
15 16777217 8 22 19
14 1114129 7 19 16
13 1052929 7 19 16
12 1048577 7 19 16
11 69649 5 15 13
10 65793 5 15 13
9 Prime! 655375 15 13
8 4369 4 11 10
7 4097 4 11 10
6 273 3 8 7
5 Prime! 2573 8 7
4 Prime! 172 4 4
3 Prime! 21 1 1
2 1 1 1 1
1 0 1 1 1
Index Nr
Decimal equivalent of numbers whose cube in base 17 is a palindrome L root 10
L cube 10
L base 17
Next > 10^10
33 7386179653 10 30 25
32 7386096132 10 30 25
31 6999895300 10 30 25
30 6977265733 10 30 25
29 6977182212 10 30 25
28 6975840963 10 30 25
27 6975757442 10 30 25
26 434476260 9 26 22
25 411758820 9 26 22
24 410427108 9 26 22
23 410338674 9 26 22
22 25562357 8 23 19
21 25557444 8 23 19
20 24226293 8 23 19
19 24221380 8 23 19
18 24142483 8 23 19
17 24137570 8 23 19
16 1503396 7 19 16
15 1425060 7 19 16
14 1419858 7 19 16
13 88452 5 15 13
12 83811 5 15 13
11 83522 5 15 13
10 5220 4 12 10
9 4914 4 12 10
8 3377 4 11 9
7 Prime! 3073 8 7
6 290 3 8 7
5 18 2 4 4
4 6 1 3 2
3 Prime! 21 1 1
2 1 1 1 1
1 0 1 1 1
Base 16
[ December 28, 2008 ]
Matt S.
asked himself how difficult is it to generate the elements of these sequences ?
Numbers n such that n^3 is palindromic in base 16.
Palindromic cubes in base 16.
as he has derived e.g. 1152921504606846977 that's well beyond what
you have listed.
Any additional links/info you can give me would be appreciated.
Here is my reply after some perusing (PDG ):
I found
1048577 3 = 1152924803144876033 = 1000030000300001 {16}
You added
1152921504606846977 3 = 1532495540865888862346031014505056805788924816845176833 =
1000000000000003000000000000003000000000000001 {16}
Is this how you derived the number by working backwards from
the pattern 1_0[x] _3_0[x] _3_0[x] _1 you discovered ?
Anyway well done and congratulations!
Ten years ago I submitted my sequences. So forgive me that I didn't
kept my original code. But from recollection I just searched in
a straightforward manner with the UBASIC program from zero till
I got tired with the last entry. Modern fast computers on the other
hand should have no problem in recreating the known sequences numbers
from A029735 & A029736 .
Of course your number cannot yet be added as there might be other
solutions in between very probably.
Matt S. wrote :
Thanks for the reply.
The largest number I have right now is approx 281 bits. I have *many*
more too. Apologies for the rudimentary notation - this is all fairly
new to me. I'm actually generating these numbers with a friend, all
coming from a coded letter that was sent to fermilab
http://www.symmetrymagazine.org/breaking/2008/05/15/code-crackers-wanted/
I have little to no training in this area.
1_0[x] _3_0[x] _3_0[x] _1 is correct for the power of 3
It can be extended into other powers as well. For example :
['1', '0', '4', '0', '6', '0', '4', '0', '1']
and on and on.
I'd like to track down where the aforementioned letter came from - and
how this sequence is involved. Surely not a coincidence ? Any ideas ?
I'm eager to hear what your thoughts are regarding the letter / sequence.
As I said, I realize it's an odd request... so any insight is welcome.
If you need more data, please feel free to ask.
Contributions
[ TOP OF PAGE ]
( © All rights reserved ) - Last modified : December 12, 2022.
Patrick De Geest - Belgium - Short Bio - Some Pictures
E-mail address : pdg@worldofnumbers.com