Introduction
Palindromic numbers are numbers which read the same from
left to right (forwards)
as from the right to left (backwards)
Here are a few random examples : 7, 3113, 44611644
- Go directly to the Palindromic cubes in bases 2 to 17 tables
- Go directly to the Base 16 topic
Palindromic cubes in bases 2 to 17
Index Nr | Decimal equivalent of numbers whose cube in base 2 is a palindrome
| L root 10 | L cube 10 | L base 2 |
| Next > 10^8 | | | |
2 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 |
|
Index Nr | Decimal equivalent of numbers whose cube in base 3 is a palindrome
| L root 10 | L cube 10 | L base 3 |
| Next > 10^10 | | | |
3 | Prime! 2 | 1 | 1 | 2 |
2 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 |
|
Index Nr | Decimal equivalent of numbers whose cube in base 4 is a palindrome A046231 | A046232 | L root 10 | L cube 10 | L base 4 |
| Next > 10^10 | | | |
18 | 4294967297 | 10 | 29 | 49 |
17 | 1073741825 | 10 | 28 | 46 |
16 | 268435457 | 9 | 26 | 43 |
15 | 67108865 | 8 | 24 | 40 |
14 | 16777217 | 8 | 22 | 37 |
13 | 4194305 | 7 | 20 | 34 |
12 | 1048577 | 7 | 19 | 31 |
11 | 262145 | 6 | 17 | 28 |
10 | Prime! 65537 | 5 | 15 | 25 |
9 | 16385 | 5 | 13 | 22 |
8 | 4097 | 4 | 11 | 19 |
7 | 1025 | 4 | 10 | 16 |
6 | Prime! 257 | 3 | 8 | 13 |
5 | 65 | 2 | 6 | 10 |
4 | Prime! 17 | 2 | 4 | 7 |
3 | Prime! 5 | 1 | 3 | 4 |
2 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 |
|
Index Nr | Decimal equivalent of numbers whose cube in base 5 is a palindrome A046233 | A046234 | L root 10 | L cube 10 | L base 5 |
| (Recalc) Next > 10^10 | | | |
23 | 476837158203126 | 15 | 45 | 64 |
22 | 95367431640626 | 14 | 42 | 61 |
21 | 19073486328126 | 14 | 40 | 58 |
20 | 3814697265626 | 13 | 38 | 55 |
19 | 762939453126 | 12 | 36 | 52 |
18 | 152587890626 | 12 | 34 | 49 |
17 | 30517578126 | 11 | 32 | 46 |
16 | 6103515626 | 10 | 30 | 43 |
15 | 1220703126 | 10 | 28 | 40 |
14 | 244140626 | 9 | 26 | 37 |
13 | 48828126 | 8 | 24 | 34 |
12 | 9765626 | 7 | 21 | 31 |
11 | 1953126 | 7 | 19 | 28 |
10 | 390626 | 6 | 17 | 25 |
9 | 78126 | 5 | 15 | 22 |
8 | 15626 | 5 | 13 | 19 |
7 | 3126 | 4 | 11 | 16 |
6 | 626 | 3 | 9 | 13 |
5 | 126 | 3 | 7 | 10 |
4 | 26 | 2 | 5 | 7 |
3 | 6 | 1 | 3 | 4 |
2 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 |
|
Index Nr | Decimal equivalent of numbers whose cube in base 6 is a palindrome A046235 | A046236 | L root 10 | L cube 10 | L base 6 |
| Next > 10^10 | | | |
15 | 2176782337 | 10 | 29 | 37 |
14 | 860627456 | 9 | 27 | 35 |
13 | 362797057 | 9 | 26 | 34 |
12 | 60466177 | 8 | 24 | 31 |
11 | 10077697 | 8 | 22 | 28 |
10 | 1679617 | 7 | 19 | 25 |
9 | 279937 | 6 | 17 | 22 |
8 | 46657 | 5 | 15 | 19 |
7 | 7777 | 4 | 12 | 16 |
6 | Prime! 1297 | 4 | 10 | 13 |
5 | 217 | 3 | 8 | 10 |
4 | Prime! 37 | 2 | 5 | 7 |
3 | Prime! 7 | 1 | 3 | 4 |
2 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 |
|
Index Nr | Decimal equivalent of numbers whose cube in base 7 is a palindrome A046237 | A046238 | L root 10 | L cube 10 | L base 7 |
| Next > 10^10 | | | |
36 | 7909306976 | 10 | 30 | 36 |
35 | 3954653488 | 10 | 29 | 35 |
34 | 1977326744 | 10 | 28 | 34 |
33 | 1129901000 | 10 | 28 | 33 |
32 | 564950500 | 9 | 27 | 32 |
31 | 282475250 | 9 | 26 | 31 |
30 | 161414432 | 9 | 25 | 30 |
29 | 80707216 | 8 | 24 | 29 |
28 | 40353608 | 8 | 23 | 28 |
27 | 23059208 | 8 | 23 | 27 |
26 | 11529604 | 8 | 22 | 26 |
25 | 5764802 | 7 | 21 | 25 |
24 | 3294176 | 7 | 20 | 24 |
23 | 1647088 | 7 | 19 | 23 |
22 | 823544 | 6 | 18 | 22 |
21 | 470600 | 6 | 18 | 21 |
20 | 235300 | 6 | 17 | 20 |
19 | 117650 | 6 | 16 | 19 |
18 | 67232 | 5 | 15 | 18 |
17 | 33616 | 5 | 14 | 17 |
16 | 16808 | 5 | 13 | 16 |
15 | 9608 | 4 | 12 | 15 |
14 | 4804 | 4 | 12 | 14 |
13 | 2402 | 4 | 11 | 13 |
12 | 1376 | 4 | 10 | 12 |
11 | 688 | 3 | 9 | 11 |
10 | 344 | 3 | 8 | 10 |
9 | 200 | 3 | 7 | 9 |
8 | 100 | 3 | 7 | 8 |
7 | 50 | 2 | 6 | 7 |
6 | 16 | 2 | 4 | 5 |
5 | 8 | 1 | 3 | 4 |
4 | 4 | 1 | 2 | 3 |
3 | Prime! 2 | 1 | 1 | 2 |
2 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 |
|
Index Nr | Decimal equivalent of numbers whose cube in base 8 is a palindrome A046239 | A046240 | L root 10 | L cube 10 | L base 8 |
| (Recalc) Next > 10^10 | | | |
21 | 68719738881 | 11 | 33 | 37 |
20 | 68719476737 | 11 | 33 | 37 |
19 | 8589934593 | 10 | 30 | 34 |
18 | 1073774593 | 10 | 28 | 31 |
17 | 1073741825 | 10 | 28 | 31 |
16 | 134217729 | 9 | 25 | 28 |
15 | 16781313 | 8 | 22 | 25 |
14 | 16777217 | 8 | 22 | 25 |
13 | 2097153 | 7 | 19 | 22 |
12 | Prime! 262657 | 6 | 17 | 19 |
11 | 262145 | 6 | 17 | 19 |
10 | 32769 | 5 | 14 | 16 |
9 | 4161 | 4 | 11 | 13 |
8 | 4097 | 4 | 11 | 13 |
7 | 513 | 3 | 9 | 10 |
6 | Prime! 73 | 2 | 6 | 7 |
5 | 65 | 2 | 6 | 7 |
4 | 9 | 1 | 3 | 4 |
3 | Prime! 3 | 1 | 2 | 2 |
2 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 |
|
Index Nr | Decimal equivalent of numbers whose cube in base 9 is a palindrome A046241 | A046242 | L root 10 | L cube 10 | L base 9 |
| (Recalc) Next > 10^10 | | | |
20 | 31381059610 | 11 | 32 | 34 |
19 | 3486843451 | 10 | 29 | 31 |
18 | 3486784402 | 10 | 29 | 31 |
17 | 387420490 | 9 | 26 | 28 |
16 | 43053283 | 8 | 23 | 25 |
15 | 43046722 | 8 | 23 | 25 |
14 | 4782970 | 7 | 21 | 22 |
13 | 532171 | 6 | 18 | 19 |
12 | 531442 | 6 | 18 | 19 |
11 | 59050 | 5 | 15 | 16 |
10 | 6643 | 4 | 12 | 13 |
9 | 6562 | 4 | 12 | 13 |
8 | 730 | 3 | 9 | 10 |
7 | 91 | 2 | 6 | 7 |
6 | 82 | 2 | 6 | 7 |
5 | 38 | 2 | 5 | 5 |
4 | 10 | 2 | 4 | 4 |
3 | Prime! 2 | 1 | 1 | 1 |
2 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 |
|
Index Nr | Decimal equivalent of numbers whose cube in base 11 is a palindrome A046243 | A046244 | L root 10 | L cube 10 | L base 11 |
| Next > 10^10 | | | |
30 | 2572306584 | 10 | 29 | 28 |
29 | 2377434984 | 10 | 29 | 28 |
28 | 2358123384 | 10 | 29 | 28 |
27 | 2357947692 | 10 | 29 | 28 |
26 | 233846064 | 9 | 26 | 25 |
25 | 216130564 | 9 | 26 | 25 |
24 | 214521264 | 9 | 25 | 25 |
23 | 214373523 | 9 | 25 | 25 |
22 | 214358882 | 9 | 25 | 25 |
21 | 21258744 | 8 | 22 | 22 |
20 | 19648344 | 8 | 22 | 22 |
19 | 19503144 | 8 | 22 | 22 |
18 | 19487172 | 8 | 22 | 22 |
17 | 1932624 | 7 | 19 | 19 |
16 | Prime! 1772893 | 7 | 19 | 19 |
15 | 1771562 | 7 | 19 | 19 |
14 | 175704 | 6 | 16 | 16 |
13 | 162504 | 6 | 16 | 16 |
12 | 161052 | 6 | 16 | 16 |
11 | 15984 | 5 | 13 | 13 |
10 | 14763 | 5 | 13 | 13 |
9 | 14642 | 5 | 13 | 13 |
8 | 1332 | 4 | 10 | 10 |
7 | 133 | 3 | 7 | 7 |
6 | 122 | 3 | 7 | 7 |
5 | 12 | 2 | 4 | 4 |
4 | Prime! 7 | 1 | 3 | 3 |
3 | Prime! 2 | 1 | 1 | 1 |
2 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 |
|
Index Nr | Decimal equivalent of numbers whose cube in base 12 is a palindrome A046245 | A046246 | L root 10 | L cube 10 | L base 12 |
| Next > 10^10 | | | |
29 | 5589762061 | 10 | 30 | 28 |
28 | 5195612305 | 10 | 30 | 28 |
27 | 5160049921 | 10 | 30 | 28 |
26 | 5159780353 | 10 | 30 | 28 |
25 | 465813517 | 9 | 27 | 25 |
24 | 432967825 | 9 | 26 | 25 |
23 | 430232257 | 9 | 26 | 25 |
22 | 430002433 | 9 | 26 | 25 |
21 | 429981697 | 9 | 26 | 25 |
20 | 38817805 | 8 | 23 | 22 |
19 | 36080785 | 8 | 23 | 22 |
18 | 35854273 | 8 | 23 | 22 |
17 | 35831809 | 8 | 23 | 22 |
16 | 3234829 | 7 | 20 | 19 |
15 | 2987713 | 7 | 20 | 19 |
14 | 2985985 | 7 | 20 | 19 |
13 | 269581 | 6 | 17 | 16 |
12 | 250705 | 6 | 17 | 16 |
11 | 248833 | 6 | 17 | 16 |
10 | 22477 | 5 | 14 | 13 |
9 | 20881 | 5 | 13 | 13 |
8 | 20737 | 5 | 13 | 13 |
7 | 1729 | 4 | 10 | 10 |
6 | Prime! 157 | 3 | 7 | 7 |
5 | 145 | 3 | 7 | 7 |
4 | Prime! 13 | 2 | 4 | 4 |
3 | Prime! 2 | 1 | 1 | 1 |
2 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 |
|
Index Nr | Decimal equivalent of numbers whose cube in base 13 is a palindrome A046247 | A046248 | L root 10 | L cube 10 | L base 13 |
| Next > 10^10 | | | |
27 | 878479252 | 9 | 27 | 25 |
26 | 820557700 | 9 | 27 | 25 |
25 | 816104212 | 9 | 27 | 25 |
24 | 815759283 | 9 | 27 | 25 |
23 | 815730722 | 9 | 27 | 25 |
22 | 67575340 | 8 | 24 | 22 |
21 | 63119980 | 8 | 24 | 22 |
20 | 62779276 | 8 | 24 | 22 |
19 | 62748518 | 8 | 24 | 22 |
18 | 5198116 | 7 | 21 | 19 |
17 | 4855540 | 7 | 21 | 19 |
16 | 4829007 | 7 | 21 | 19 |
15 | 4826810 | 7 | 21 | 19 |
14 | 399868 | 6 | 17 | 16 |
13 | 373660 | 6 | 17 | 16 |
12 | 371294 | 6 | 17 | 16 |
11 | 30772 | 5 | 14 | 13 |
10 | 28731 | 5 | 14 | 13 |
9 | 28562 | 5 | 14 | 13 |
8 | 2380 | 4 | 11 | 10 |
7 | 2198 | 4 | 11 | 10 |
6 | 183 | 3 | 7 | 7 |
5 | 170 | 3 | 7 | 7 |
4 | 14 | 2 | 4 | 4 |
3 | Prime! 2 | 1 | 1 | 1 |
2 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 |
|
Index Nr | Decimal equivalent of numbers whose cube in base 14 is a palindrome A046249 | A046250 | L root 10 | L cube 10 | L base 14 |
| Next > 10^10 | | | |
31 | 1581240991 | 10 | 28 | 25 |
30 | 1581202575 | 10 | 28 | 25 |
29 | 1483318789 | 10 | 28 | 25 |
28 | Prime! 1476368041 | 10 | 28 | 25 |
27 | 1476329625 | 10 | 28 | 25 |
26 | 1475827473 | 10 | 28 | 25 |
25 | 1475789057 | 10 | 28 | 25 |
24 | 112943055 | 9 | 25 | 22 |
23 | 105951525 | 9 | 25 | 22 |
22 | 105454665 | 9 | 25 | 22 |
21 | 105413505 | 9 | 25 | 22 |
20 | Prime! 8070119 | 7 | 21 | 19 |
19 | 8067375 | 7 | 21 | 19 |
18 | 7568149 | 7 | 21 | 19 |
17 | 7532281 | 7 | 21 | 19 |
16 | 7529537 | 7 | 21 | 19 |
15 | 576255 | 6 | 18 | 16 |
14 | 540765 | 6 | 18 | 16 |
13 | 537825 | 6 | 18 | 16 |
12 | 41175 | 5 | 14 | 13 |
11 | 38613 | 5 | 14 | 13 |
10 | 38417 | 5 | 14 | 13 |
9 | 2955 | 4 | 11 | 10 |
8 | 2745 | 4 | 11 | 10 |
7 | Prime! 461 | 3 | 8 | 7 |
6 | Prime! 211 | 3 | 7 | 7 |
5 | Prime! 197 | 3 | 7 | 7 |
4 | 15 | 2 | 4 | 4 |
3 | Prime! 2 | 1 | 1 | 1 |
2 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 |
|
Index Nr | Decimal equivalent of numbers whose cube in base 15 is a palindrome A046251 | A046252 | L root 10 | L cube 10 | L base 15 |
| Next > 10^10 | | | |
44 | 2733800641 | 10 | 29 | 25 |
43 | 2733750016 | 10 | 29 | 25 |
42 | 2574281476 | 10 | 29 | 25 |
41 | Prime! 2563704001 | 10 | 29 | 25 |
40 | 2563653376 | 10 | 29 | 25 |
39 | 2562941251 | 10 | 29 | 25 |
38 | 2562890626 | 10 | 29 | 25 |
37 | 1366875008 | 10 | 28 | 24 |
36 | 683437504 | 9 | 27 | 23 |
35 | 182250016 | 9 | 25 | 22 |
34 | 171618976 | 9 | 25 | 22 |
33 | 170913376 | 9 | 25 | 22 |
32 | 170859376 | 9 | 25 | 22 |
31 | 91125008 | 8 | 24 | 21 |
30 | 45562504 | 8 | 23 | 20 |
29 | 12153391 | 8 | 22 | 19 |
28 | 12150016 | 8 | 22 | 19 |
27 | 11441476 | 8 | 22 | 19 |
26 | 11394001 | 8 | 22 | 19 |
25 | 11390626 | 8 | 22 | 19 |
24 | 6075008 | 7 | 21 | 18 |
23 | 3037504 | 7 | 20 | 17 |
22 | 810016 | 6 | 18 | 16 |
21 | 762976 | 6 | 18 | 16 |
20 | 759376 | 6 | 18 | 16 |
19 | 405008 | 6 | 17 | 15 |
18 | 202504 | 6 | 16 | 14 |
17 | 54016 | 5 | 15 | 13 |
16 | 50851 | 5 | 15 | 13 |
15 | 50626 | 5 | 15 | 13 |
14 | 27008 | 5 | 14 | 12 |
13 | 13504 | 5 | 13 | 11 |
12 | 3616 | 4 | 11 | 10 |
11 | 3376 | 4 | 11 | 10 |
10 | 1808 | 4 | 10 | 9 |
9 | 904 | 3 | 9 | 8 |
8 | Prime! 241 | 3 | 8 | 7 |
7 | 226 | 3 | 8 | 7 |
6 | 16 | 2 | 4 | 4 |
5 | 8 | 1 | 3 | 3 |
4 | 4 | 1 | 2 | 2 |
3 | Prime! 2 | 1 | 1 | 1 |
2 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 |
|
Index Nr | Decimal equivalent of numbers whose cube in base 16 is a palindrome A029735 | A029736 | L root 10 | L cube 10 | L base 16 |
| (Recalc) Next > 10^10 | | | |
49 | 1168499544081 | 13 | 37 | 31 |
48 | 1168247947281 | 13 | 37 | 31 |
47 | 1168232153105 | 13 | 37 | 31 |
46 | 1168231104529 | 13 | 37 | 31 |
45 | 1104075034881 | 13 | 37 | 31 |
44 | 1103807643905 | 13 | 37 | 31 |
43 | 1103806595329 | 13 | 37 | 31 |
42 | 1099781115905 | 13 | 37 | 31 |
41 | 1099780067329 | 13 | 37 | 31 |
40 | 1099529519105 | 13 | 37 | 31 |
39 | 1099528470529 | 13 | 37 | 31 |
38 | 1099512676353 | 13 | 37 | 31 |
37 | 1099511627777 | 13 | 37 | 31 |
36 | 73014444049 | 11 | 33 | 28 |
35 | 68987912449 | 11 | 33 | 28 |
34 | 68736258049 | 11 | 33 | 28 |
33 | 68720590849 | 11 | 33 | 28 |
32 | 68719476737 | 11 | 33 | 28 |
31 | 4563468305 | 10 | 29 | 25 |
30 | 4563402769 | 10 | 29 | 25 |
29 | 4311744769 | 10 | 29 | 25 |
28 | 4296085505 | 10 | 29 | 25 |
27 | 4296019969 | 10 | 29 | 25 |
26 | 4295032833 | 10 | 29 | 25 |
25 | 4294967297 | 10 | 29 | 25 |
24 | 285212689 | 9 | 26 | 22 |
23 | 269484289 | 9 | 26 | 22 |
22 | 268505089 | 9 | 26 | 22 |
21 | 268435457 | 9 | 26 | 22 |
20 | 17829905 | 8 | 22 | 19 |
19 | 17825809 | 8 | 22 | 19 |
18 | 16847105 | 8 | 22 | 19 |
17 | 16843009 | 8 | 22 | 19 |
16 | 16781313 | 8 | 22 | 19 |
15 | 16777217 | 8 | 22 | 19 |
14 | 1114129 | 7 | 19 | 16 |
13 | 1052929 | 7 | 19 | 16 |
12 | 1048577 | 7 | 19 | 16 |
11 | 69649 | 5 | 15 | 13 |
10 | 65793 | 5 | 15 | 13 |
9 | Prime! 65537 | 5 | 15 | 13 |
8 | 4369 | 4 | 11 | 10 |
7 | 4097 | 4 | 11 | 10 |
6 | 273 | 3 | 8 | 7 |
5 | Prime! 257 | 3 | 8 | 7 |
4 | Prime! 17 | 2 | 4 | 4 |
3 | Prime! 2 | 1 | 1 | 1 |
2 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 |
|
Index Nr | Decimal equivalent of numbers whose cube in base 17 is a palindrome
| L root 10 | L cube 10 | L base 17 |
| Next > 10^10 | | | |
33 | 7386179653 | 10 | 30 | 25 |
32 | 7386096132 | 10 | 30 | 25 |
31 | 6999895300 | 10 | 30 | 25 |
30 | 6977265733 | 10 | 30 | 25 |
29 | 6977182212 | 10 | 30 | 25 |
28 | 6975840963 | 10 | 30 | 25 |
27 | 6975757442 | 10 | 30 | 25 |
26 | 434476260 | 9 | 26 | 22 |
25 | 411758820 | 9 | 26 | 22 |
24 | 410427108 | 9 | 26 | 22 |
23 | 410338674 | 9 | 26 | 22 |
22 | 25562357 | 8 | 23 | 19 |
21 | 25557444 | 8 | 23 | 19 |
20 | 24226293 | 8 | 23 | 19 |
19 | 24221380 | 8 | 23 | 19 |
18 | 24142483 | 8 | 23 | 19 |
17 | 24137570 | 8 | 23 | 19 |
16 | 1503396 | 7 | 19 | 16 |
15 | 1425060 | 7 | 19 | 16 |
14 | 1419858 | 7 | 19 | 16 |
13 | 88452 | 5 | 15 | 13 |
12 | 83811 | 5 | 15 | 13 |
11 | 83522 | 5 | 15 | 13 |
10 | 5220 | 4 | 12 | 10 |
9 | 4914 | 4 | 12 | 10 |
8 | 3377 | 4 | 11 | 9 |
7 | Prime! 307 | 3 | 8 | 7 |
6 | 290 | 3 | 8 | 7 |
5 | 18 | 2 | 4 | 4 |
4 | 6 | 1 | 3 | 2 |
3 | Prime! 2 | 1 | 1 | 1 |
2 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 |
|
Base 16
[ December 28, 2008 ]
Matt S.
asked himself how difficult is it to generate the elements of these sequences ?
Numbers n such that n^3 is palindromic in base 16.
Palindromic cubes in base 16.
as he has derived e.g. 1152921504606846977 that's well beyond what
you have listed.
Any additional links/info you can give me would be appreciated.
Here is my reply after some perusing (PDG):
I found
10485773 = 1152924803144876033 = 1000030000300001{16}
You added
11529215046068469773 = 1532495540865888862346031014505056805788924816845176833 =
1000000000000003000000000000003000000000000001{16}
Is this how you derived the number by working backwards from
the pattern 1_0[x]_3_0[x]_3_0[x]_1 you discovered ?
Anyway well done and congratulations!
Ten years ago I submitted my sequences. So forgive me that I didn't
kept my original code. But from recollection I just searched in
a straightforward manner with the UBASIC program from zero till
I got tired with the last entry. Modern fast computers on the other
hand should have no problem in recreating the known sequences numbers
from A029735 & A029736.
Of course your number cannot yet be added as there might be other
solutions in between very probably.
Matt S. wrote :
Thanks for the reply.
The largest number I have right now is approx 281 bits. I have *many*
more too. Apologies for the rudimentary notation - this is all fairly
new to me. I'm actually generating these numbers with a friend, all
coming from a coded letter that was sent to fermilab
http://www.symmetrymagazine.org/breaking/2008/05/15/code-crackers-wanted/
I have little to no training in this area.
1_0[x]_3_0[x]_3_0[x]_1 is correct for the power of 3
It can be extended into other powers as well. For example :
['1', '0', '4', '0', '6', '0', '4', '0', '1']
and on and on.
I'd like to track down where the aforementioned letter came from - and
how this sequence is involved. Surely not a coincidence ? Any ideas ?
I'm eager to hear what your thoughts are regarding the letter / sequence.
As I said, I realize it's an odd request... so any insight is welcome.
If you need more data, please feel free to ask.
Contributions
[ TOP OF PAGE]
( © All rights reserved ) - Last modified : October 7, 2024.
Patrick De Geest - Belgium - Short Bio - Some Pictures
E-mail address : pdg@worldofnumbers.com