Introduction
Palindromic numbers are numbers which read the same from
left to right (forwards)
as from the right to left (backwards)
Here are a few random examples : 7, 3113, 44611644
- Go directly to the Base 2 to Base 60 - with gaps - Tables topic
- Go directly to the Base 2 Messages topic
Palindromic in Base 10 and Bases 2 to 60 - with gaps Tables
Index Nr | Also palindromic in base 2 (binary) A007632 | L base 10 | L base 2 |
| Next > [183] | | |
183 | 9794258529088310956256765905095676526590138809258524979 | 55 | 183 |
182 | 7992515739300692681583388637368833851862960039375152997 | 55 | 183 |
181 | 5982107767230157388234011419141104328837510327677012895 | 55 | 182 |
180 | 5750352680855632597679040581850409767952365580862530575 | 55 | 182 |
179 | 5500130929952642025961499398939941695202462599290310055 | 55 | 182 |
178 | 5375810570128326670426378465648736240766238210750185735 | 55 | 182 |
177 | 1610250372237506394572456221226542754936057322730520161 | 55 | 181 |
176 | 141608322140499819558130089980031855918994041223806141 | 54 | 177 |
175 | 98269568061626490790443471917434409709462616086596289 | 53 | 177 |
174 | 96974333658798698186600459595400668189689785633347969 | 53 | 177 |
173 | 74107193679989476350632192529123605367498997639170147 | 53 | 176 |
172 | 38042682015138742476430662826603467424783151028624083 | 53 | 175 |
171 | 14290800261309297950160720602706105979290316200809241 | 53 | 174 |
170 | 11583408501354096073227429192472237069045310580438511 | 53 | 173 |
169 | 3329456979344803072321377337731232703084439796549233 | 52 | 172 |
168 | 1894500919149741184783894664983874811479419190054981 | 52 | 171 |
167 | 1671376559622765380050133113310500835672269556731761 | 52 | 171 |
166 | 546590550388169569066255343552660965961883055095645 | 51 | 169 |
165 | 544889901625422417825862090268528714224526109988445 | 51 | 169 |
164 | 349755095251390482672234414432276284093152590557943 | 51 | 168 |
163 | 308714513290492817327216515612723718294092315417803 | 51 | 168 |
162 | 128426799107797312365090999090563213797701997624821 | 51 | 167 |
161 | 9142687306518774468290258520928644778156037862419 | 49 | 163 |
160 | 7109242970502610649115178715119460162050792429017 | 49 | 163 |
159 | 1873893355166996611906735376091166996615533983781 | 49 | 161 |
158 | 597817365870480462496846648694264084078563718795 | 48 | 159 |
157 | 502186653128032879493361163394978230821356681205 | 48 | 159 |
156 | 102735644379963218861031130168812369973446537201 | 48 | 157 |
155 | 78737696079148631316169196161313684197069673787 | 47 | 156 |
154 | 74953152103456169263148284136296165430125135947 | 47 | 156 |
153 | 72830033748815722240681118604222751884733003827 | 47 | 156 |
152 | 72224512737657344148643434684144375673721542227 | 47 | 156 |
151 | 56243939994005432191600400619123450049993934265 | 47 | 156 |
150 | 36755925874534219715185758151791243547852955763 | 47 | 155 |
149 | 16422159001061376847917371974867316010095122461 | 47 | 154 |
148 | 12328899531897059171731113717195079813599882321 | 47 | 154 |
147 | 9335388324586156026843333486206516854238835339 | 46 | 153 |
146 | 5318935032766104711807997081174016672305398135 | 46 | 152 |
145 | 903240486809073407096959690704370908684042309 | 45 | 150 |
144 | 706400325289926993853434358399629982523004607 | 45 | 149 |
143 | 557019370941199612258585852216991149073910755 | 45 | 149 |
142 | 9101547767757547725021205277457577677451019 | 43 | 143 |
141 | 7342779513978827245484845427288793159772437 | 43 | 143 |
140 | 3381578420704603001613161003064070248751833 | 43 | 142 |
139 | 1816060344791285708869688075821974430606181 | 43 | 141 |
138 | 905357630732463833436634338364237036753509 | 42 | 140 |
137 | 595943598626320807905509708023626895349595 | 42 | 139 |
136 | 309612431907274418544445814472709134216903 | 42 | 138 |
135 | 170341815153453197154451791354351518143071 | 42 | 137 |
134 | 139035351443367699760067996763344153530931 | 42 | 137 |
133 | 128795669673344381770077183443376966597821 | 42 | 137 |
132 | 98801466348600079992129997000684366410889 | 41 | 137 |
131 | 56545858306667087923432978076660385854565 | 41 | 136 |
130 | 38090421176450233778487733205467112409083 | 41 | 135 |
129 | 31636759764024794204540249742046795763613 | 41 | 135 |
128 | 14327425216354951264146215945361252472341 | 41 | 134 |
127 | 7114907950920173924554293710290597094117 | 40 | 133 |
126 | 1634587141488515712882175158841417854361 | 40 | 131 |
125 | 1017421766189445102992015449816671247101 | 40 | 130 |
124 | 773609618198307097595790703891816906377 | 39 | 130 |
123 | 551700061998405245575542504899160007155 | 39 | 129 |
122 | 131674457014330218696812033410754476131 | 39 | 127 |
121 | 124192421350471300727003174053124291421 | 39 | 127 |
120 | 122240824002234545959545432200428042221 | 39 | 127 |
119 | 32190158233101105022050110133285109123 | 38 | 125 |
118 | 9970387454991896491946981994547830799 | 37 | 123 |
117 | 9707999142717984907094897172419997079 | 37 | 123 |
116 | 5893890080115984244424895110800983985 | 37 | 123 |
115 | 1681824725831390428240931385274281861 | 37 | 121 |
114 | 1323475457008895965695988007545743231 | 37 | 120 |
113 | 998021119318189842248981813911120899 | 36 | 120 |
112 | 794397832642722540045227246238793497 | 36 | 120 |
111 | 710084230446469950059964644032480017 | 36 | 120 |
110 | 139124355701640720027046107553421931 | 36 | 117 |
109 | 96754720977532710701723577902745769 | 36 | 117 |
108 | 94285848717805140304150871784858249 | 36 | 117 |
107 | 76759778311938325452383911387795767 | 36 | 116 |
106 | 54074940541725088788052714504947045 | 36 | 116 |
105 | 10827628430039640604693003482672801 | 36 | 114 |
104 | 10652099006552766666725560099025601 | 36 | 114 |
103 | 9932525402284695775964822045252399 | 35 | 113 |
102 | 1480869563960100770010693659680841 | 35 | 111 |
101 | 1409460884147943003497414880649041 | 35 | 111 |
100 | 579782100975917393719579001287975 | 34 | 109 |
99 | 332997156422555464555224651799233 | 33 | 109 |
98 | 188726493036450333054630394627881 | 33 | 108 |
97 | 7155681676104835384016761865517 | 31 | 103 |
96 | 3390741646331381831336461470933 | 31 | 102 |
95 | 1115792035060833380605302975111 | 31 | 100 |
94 | 378059787464677776464787950873 | 30 | 99 |
93 | 56532345659072227095654323565 | 29 | 96 |
92 | 30658464822225352222846485603 | 29 | 95 |
91 | 30000258151173237115185200003 | 29 | 95 |
90 | 19756291244127372144219265791 | 29 | 94 |
89 | 17869806142184248124160896871 | 29 | 94 |
88 | 1609061098335005338901609061 | 28 | 91 |
87 | 795280629691202196926082597 | 27 | 90 |
86 | 552963956270141072659369255 | 27 | 89 |
85 | 532079161251434152161970235 | 27 | 89 |
84 | Prime Curios! 390714505091666190505417093 | 27 | 89 |
83 | 351095331428353824133590153 | 27 | 89 |
82 | 138758321383797383123857831 | 27 | 87 |
81 | 50824513851188115831542805 | 26 | 86 |
80 | 7475703079870789703075747 | 25 | 83 |
79 | 7260988688520258868890627 | 25 | 83 |
78 | 5812988563013103658892185 | 25 | 83 |
77 | 1219228158701078518229121 | 25 | 81 |
76 | 1194313761393931673134911 | 25 | 80 |
75 | 1130486074817184706840311 | 25 | 80 |
74 | 94261805583838550816249 | 23 | 77 |
73 | 92913401775957710431929 | 23 | 77 |
72 | 72928088195859188082927 | 23 | 76 |
71 | 17461998948684989916471 | 23 | 74 |
70 | 539475328171823574935 | 21 | 69 |
69 | 114354126121621453411 | 21 | 67 |
68 | 94778157422475187749 | 20 | 67 |
67 | 32889941788714998823 | 20 | 65 |
66 | 10879740244204797801 | 20 | 64 |
65 | 9674868723278684769 | 19 | 64 |
64 | 7036267126217626307 | 19 | 63 |
63 | 313558153351855313 | 18 | 59 |
62 | 161206152251602161 | 18 | 58 |
61 | 55952637073625955 | 17 | 56 |
60 | 37629927072992673 | 17 | 56 |
59 | 37078796869787073 | 17 | 56 |
58 | 34104482028440143 | 17 | 55 |
57 | 18279440804497281 | 17 | 55 |
56 | 10819671917691801 | 17 | 54 |
55 | 10457587478575401 | 17 | 54 |
54 | 3148955775598413 | 16 | 52 |
53 | 1793770770773971 | 16 | 51 |
52 | 933138363831339 | 15 | 50 |
51 | 552212535212255 | 15 | 49 |
50 | 34141388314143 | 14 | 45 |
49 | 9484874784849 | 13 | 44 |
48 | Prime Curios! 7284717174827 | 13 | 43 |
47 | 7227526257227 | 13 | 43 |
46 | 5652622262565 | 13 | 43 |
45 | 1999925299991 | 13 | 41 |
44 | 1794096904971 | 13 | 41 |
43 | 1792704072971 | 13 | 41 |
42 | 1474922294741 | 13 | 41 |
41 | 1413899983141 | 13 | 41 |
40 | 1234104014321 | 13 | 41 |
39 | 136525525631 | 12 | 37 |
38 | 110948849011 | 12 | 37 |
37 | 75015151057 | 11 | 37 |
36 | 32479297423 | 11 | 35 |
35 | 18462126481 | 11 | 35 |
34 | 10050905001 | 11 | 34 |
33 | 7451111547 | 10 | 33 |
32 | 1290880921 | 10 | 31 |
31 | 939474939 | 9 | 30 |
30 | 910373019 | 9 | 30 |
29 | 719848917 | 9 | 30 |
28 | 13500531 | 8 | 24 |
27 | 5841485 | 7 | 23 |
26 | 5259525 | 7 | 23 |
25 | 5071705 | 7 | 23 |
24 | 3129213 | 7 | 22 |
23 | 1979791 | 7 | 21 |
22 | 1934391 | 7 | 21 |
21 | 1758571 | 7 | 21 |
20 | 585585 | 6 | 20 |
19 | 73737 | 5 | 17 |
18 | 53835 | 5 | 16 |
17 | 53235 | 5 | 16 |
16 | 39993 | 5 | 16 |
15 | 32223 | 5 | 15 |
14 | 15351 | 5 | 14 |
13 | 9009 | 4 | 14 |
12 | 7447 | 4 | 13 |
11 | 717 | 3 | 10 |
10 | 585 | 3 | 10 |
9 | Prime Curios! 313 | 3 | 9 |
8 | 99 | 2 | 7 |
7 | 33 | 2 | 6 |
6 | 9 | 1 | 4 |
5 | Prime! 7 | 1 | 3 |
4 | Prime! 5 | 1 | 3 |
3 | Prime! 3 | 1 | 2 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 3 (ternary) A007633 | L base 10 | L base 3 |
| Next > 10^23 | | |
74 | 29397375542624557379392 | 23 | 48 |
73 | 26365450743834705456362 | 23 | 47 |
72 | 12241986986968968914221 | 23 | 47 |
71 | 2874264042112404624782 | 22 | 45 |
70 | 821697400030004796128 | 21 | 44 |
69 | 671028608646806820176 | 21 | 44 |
68 | 277444488080884444772 | 21 | 43 |
67 | 134137835777538731431 | 21 | 43 |
66 | 125556514464415655521 | 21 | 43 |
65 | 65691169644696119656 | 20 | 42 |
64 | 17706590033009560771 | 20 | 41 |
63 | 6942498569658942496 | 19 | 40 |
62 | 4054962560652694504 | 19 | 40 |
61 | Prime! 3195269530359625913 | 19 | 39 |
60 | 2746827231327286472 | 19 | 39 |
59 | 2283864176714683822 | 19 | 39 |
58 | 659295875578592956 | 18 | 38 |
57 | 424676146641676424 | 18 | 37 |
56 | 354164182281461453 | 18 | 37 |
55 | 248480984489084842 | 18 | 37 |
54 | 65192854245829156 | 17 | 36 |
53 | 21669625852696612 | 17 | 35 |
52 | 21075228182257012 | 17 | 35 |
51 | 1984267447624891 | 16 | 33 |
50 | 534174353471435 | 15 | 31 |
49 | 438222212222834 | 15 | 31 |
48 | 69490044009496 | 14 | 30 |
47 | 6852190912586 | 13 | 27 |
46 | 5972209022795 | 13 | 27 |
45 | 4978471748794 | 13 | 27 |
44 | 4657098907564 | 13 | 27 |
43 | 4320048400234 | 13 | 27 |
42 | 2121010101212 | 13 | 26 |
41 | 81234543218 | 11 | 23 |
40 | 58049094085 | 11 | 23 |
39 | 2518338152 | 10 | 20 |
38 | 885626588 | 9 | 19 |
37 | 520080025 | 9 | 19 |
36 | 387505783 | 9 | 19 |
35 | 239060932 | 9 | 18 |
34 | 211131112 | 9 | 18 |
33 | 123464321 | 9 | 17 |
32 | Prime! 112969211 | 9 | 17 |
31 | 83155138 | 8 | 17 |
30 | 27711772 | 8 | 16 |
29 | Prime! 7949497 | 7 | 15 |
28 | 7875787 | 7 | 15 |
27 | 5737375 | 7 | 15 |
26 | 4287824 | 7 | 14 |
25 | 4251524 | 7 | 14 |
24 | 4219124 | 7 | 14 |
23 | 4022204 | 7 | 14 |
22 | 2985892 | 7 | 14 |
21 | 1521251 | 7 | 13 |
20 | 848848 | 6 | 13 |
19 | Prime! 93739 | 5 | 11 |
18 | 92929 | 5 | 11 |
17 | 76267 | 5 | 11 |
16 | 75457 | 5 | 11 |
15 | 74647 | 5 | 11 |
14 | 48884 | 5 | 10 |
13 | 29092 | 5 | 10 |
12 | Prime! 757 | 3 | 7 |
11 | 656 | 3 | 6 |
10 | 484 | 3 | 6 |
9 | 242 | 3 | 5 |
8 | 212 | 3 | 5 |
7 | Prime! 151 | 3 | 5 |
6 | 121 | 3 | 5 |
5 | 8 | 1 | 2 |
4 | 4 | 1 | 2 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 4 A029961 | L base 10 | L base 4 |
| Next > 10^34 | | |
99 | 7179388640860660330660680468839717 | 34 | 57 |
98 | 5108871198905577557755098911788015 | 34 | 56 |
97 | 994887846928401212104829648788499 | 33 | 55 |
96 | 831689027065710434017560720986138 | 33 | 55 |
95 | 681970163682115333511286361079186 | 33 | 55 |
94 | 582281078505704363407505870182285 | 33 | 55 |
93 | 562496915896771070177698519694265 | 33 | 55 |
92 | 372432716388987767789883617234273 | 33 | 55 |
91 | 60036324544335099053344542363006 | 32 | 53 |
90 | 31197674993704500540739947679113 | 32 | 53 |
89 | 5435741640249592959420461475345 | 31 | 52 |
88 | 1875014103448187818443014105781 | 31 | 51 |
87 | 1871235782426682866242875321781 | 31 | 51 |
86 | 1816218002915034305192008126181 | 31 | 51 |
85 | 545349408734694496437804943545 | 30 | 50 |
84 | 92792216149502820594161229729 | 29 | 49 |
83 | 15821048498880208889484012851 | 29 | 47 |
82 | 7778107491576446751947018777 | 28 | 47 |
81 | 666101379010252010973101666 | 27 | 45 |
80 | 541144382839404938283441145 | 27 | 45 |
79 | 353061698367474763896160353 | 27 | 45 |
78 | 336725943608707806349527633 | 27 | 45 |
77 | 35852144650688605644125853 | 26 | 43 |
76 | 5667740260737370620477665 | 25 | 42 |
75 | 5644977785034305877794465 | 25 | 42 |
74 | 5205366624977794266635025 | 25 | 42 |
73 | 5072939121521251219392705 | 25 | 42 |
72 | 1622633305817185033362261 | 25 | 41 |
71 | 224769553250052355967422 | 24 | 39 |
70 | 149265574723327475562941 | 24 | 39 |
69 | 109895081241142180598901 | 24 | 39 |
68 | 98996197452425479169989 | 23 | 39 |
67 | 59923211850205811232995 | 23 | 38 |
66 | 59737594200100249573795 | 23 | 38 |
65 | 57410264882528846201475 | 23 | 38 |
64 | 874218768525867812478 | 21 | 35 |
63 | 830935451626154539038 | 21 | 35 |
62 | 819177862404268771918 | 21 | 35 |
61 | 542737478606874737245 | 21 | 35 |
60 | 371765223161322567173 | 21 | 35 |
59 | 317920613282316029713 | 21 | 35 |
58 | 43982928355382928934 | 20 | 33 |
57 | 41378114300341187314 | 20 | 33 |
56 | 5808197420247918085 | 19 | 32 |
55 | 5452702834382072545 | 19 | 32 |
54 | 3896203035303026983 | 19 | 31 |
53 | 3614621407041264163 | 19 | 31 |
52 | 3610232617162320163 | 19 | 31 |
51 | Prime! 1270237235327320721 | 19 | 31 |
50 | 101882796697288101 | 18 | 29 |
49 | 96062045454026069 | 17 | 29 |
48 | 57264776467746275 | 17 | 28 |
47 | 55934950005943955 | 17 | 28 |
46 | 13585963536958531 | 17 | 27 |
45 | 7145572222755417 | 16 | 27 |
44 | 912702454207219 | 15 | 25 |
43 | 815969141969518 | 15 | 25 |
42 | 646219242912646 | 15 | 25 |
41 | 41830077003814 | 14 | 23 |
40 | 5690277720965 | 13 | 22 |
39 | 3445416145443 | 13 | 21 |
38 | 1649061609461 | 13 | 21 |
37 | 1491278721941 | 13 | 21 |
36 | 508152251805 | 12 | 20 |
35 | 506802208605 | 12 | 20 |
34 | Prime! 73979697937 | 11 | 19 |
33 | 59201610295 | 11 | 18 |
32 | 53406060435 | 11 | 18 |
31 | 51717171715 | 11 | 18 |
30 | 954656459 | 9 | 15 |
29 | 623010326 | 9 | 15 |
28 | 53822835 | 8 | 13 |
27 | 5679765 | 7 | 12 |
26 | 5614165 | 7 | 12 |
25 | 5297925 | 7 | 12 |
24 | 5259525 | 7 | 12 |
23 | 5226225 | 7 | 12 |
22 | 5051505 | 7 | 12 |
21 | 3866683 | 7 | 11 |
20 | Prime! 3826283 | 7 | 11 |
19 | 2215122 | 7 | 11 |
18 | 1801081 | 7 | 11 |
17 | 506605 | 6 | 10 |
16 | 57675 | 5 | 8 |
15 | 55655 | 5 | 8 |
14 | 55255 | 5 | 8 |
13 | 53235 | 5 | 8 |
12 | 7997 | 4 | 7 |
11 | 939 | 3 | 5 |
10 | Prime! 787 | 3 | 5 |
9 | 666 | 3 | 5 |
8 | 393 | 3 | 5 |
7 | Prime! 373 | 3 | 5 |
6 | 55 | 2 | 3 |
5 | Prime! 5 | 1 | 2 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 5 A029962 | L base 10 | L base 5 |
| Next > 10^65 | | |
235 | 99543624930708890704741862774786868747726814740709880703942634599 | 65 | 93 |
234 | 99147784312541604654976982616872327861628967945640614521348774199 | 65 | 93 |
233 | 6328602704926148022920974990772442770994790292208416294072068236 | 64 | 92 |
232 | 3214064425866839870550144501476006741054410550789386685244604123 | 64 | 91 |
231 | 1194298706261022647836038501203773021058306387462201626078924911 | 64 | 91 |
230 | 64246994130107791610563653101711710135636501619770103149964246 | 62 | 89 |
229 | 64246947151782073152069988044044044088996025137028715174964246 | 62 | 89 |
228 | 6726055113244810012075917310121210137195702100184423115506276 | 61 | 88 |
227 | 1537290958777611519852104788359538874012589151167778590927351 | 61 | 87 |
226 | 1532805993046939711317225597922297955227131179396403995082351 | 61 | 87 |
225 | 883356191198880777154229788401104887922451777088891191653388 | 60 | 86 |
224 | 855387148635738589348806089598895980608843985837536841783558 | 60 | 86 |
223 | 65611982177205547205464612752725721646450274550277128911656 | 59 | 85 |
222 | 49066470901871197820861535773837753516802879117810907466094 | 59 | 84 |
221 | 46564717781637429651286018560906581068215692473618771746564 | 59 | 84 |
220 | 46193204666936421034725056580608565052743012463966640239164 | 59 | 84 |
219 | 26819889378948503897349399266566299394379830584987398891862 | 59 | 84 |
218 | 26819327009787305648386096848684869068384650378790072391862 | 59 | 84 |
217 | 26429470394241104810070078034443087007001840114249307492462 | 59 | 84 |
216 | 23505993486869791222414191577177519141422219796868439950532 | 59 | 84 |
215 | 23505101759336115455443641282328214634455451163395710150532 | 59 | 84 |
214 | 23110716142491983043006607134643170660034038919424161701132 | 59 | 84 |
213 | 9939319018903649287536637142992417366357829463098109139399 | 58 | 83 |
212 | 9663532981431429183577455753113575547753819241341892353669 | 58 | 83 |
211 | 323992966009823764929890740888047098929467328900669299323 | 57 | 81 |
210 | 147607387738648286008522726555627225800682846837783706741 | 57 | 81 |
209 | 147479499604608433501150032393230051105334806406994974741 | 57 | 81 |
208 | 143388662988323740825383628646826383528047323889266883341 | 57 | 81 |
207 | 143321023950291019441762870959078267144910192059320123341 | 57 | 81 |
206 | 119863297658330074654226108000801622456470033856792368911 | 57 | 81 |
205 | 119628570830560390462705268656862507264093065038075826911 | 57 | 81 |
204 | Prime! 7278175677249196711781595411145951871176919427765718727 | 55 | 79 |
203 | 7273374492984432327579333256523339757232344892944733727 | 55 | 79 |
202 | 7222664231853227887310973231323790137887223581324662227 | 55 | 79 |
201 | 6432766862954931730863303210123033680371394592686672346 | 55 | 79 |
200 | 85716526225965980181166063136066118108956952262561758 | 53 | 76 |
199 | 85716017941173123289734017871043798232137114971061758 | 53 | 76 |
198 | 85716017477430276081758313031385718067203477471061758 | 53 | 76 |
197 | 82804167487745127987827179797172878972154778476140828 | 53 | 76 |
196 | 4677402018132779160228780990878220619772318102047764 | 52 | 74 |
195 | 842273089643651424746389343983647424156346980372248 | 51 | 73 |
194 | 842273084433104837434610484016434738401334480372248 | 51 | 73 |
193 | 842226914944632453620370868073026354236449419622248 | 51 | 73 |
192 | 14866415178804123258016455461085232140887151466841 | 50 | 71 |
191 | 14453303304094582613377100177331628549040330335441 | 50 | 71 |
190 | 649936241751591323106805508601323195157142639946 | 48 | 69 |
189 | 644863400626259088360013310063880952626004368446 | 48 | 69 |
188 | 18946467978107252552707370725525270187976464981 | 47 | 67 |
187 | 18443384607066153566982628966535166070648334481 | 47 | 67 |
186 | 15431793058951766720187878102766715985039713451 | 47 | 67 |
185 | 15088344815041421175663836657112414051844388051 | 47 | 67 |
184 | 15083888608839064281812521818246093880688838051 | 47 | 67 |
183 | 628697035925578552616888616255875529530796826 | 45 | 65 |
182 | 623253838747288310488898884013882747838352326 | 45 | 65 |
181 | 623206113631461755935454539557164136311602326 | 45 | 65 |
180 | 453749841231167144063656360441761132148947354 | 45 | 64 |
179 | 453511538505603587495626594785306505835115354 | 45 | 64 |
178 | 299610806696519408825434528804915696608016992 | 45 | 64 |
177 | 299610383727266016934646439610662727383016992 | 45 | 64 |
176 | 295964701807089636010787010636980708107469592 | 45 | 64 |
175 | 295282435673135443681676186344531376534282592 | 45 | 64 |
174 | 266201850128363317817101718713363821058102662 | 45 | 64 |
173 | 98966828061040971279788797217904016082866989 | 44 | 63 |
172 | 98912606618485761310633601316758481660621989 | 44 | 63 |
171 | 84086672007102503839977993830520170027668048 | 44 | 63 |
170 | 81240685713569129553899835592196531758604218 | 44 | 63 |
169 | 6011032286710901481210121841090176822301106 | 43 | 62 |
168 | 4277593255207257584473744857527025523957724 | 43 | 61 |
167 | 4270026508536613602272722063166358056200724 | 43 | 61 |
166 | 4236754831325615292754572925165231384576324 | 43 | 61 |
165 | 4236708500824894032575752304984280058076324 | 43 | 61 |
164 | 2426494758641569264741474629651468574946242 | 43 | 61 |
163 | 2426494706658461989505059891648566074946242 | 43 | 61 |
162 | 2181439476143709144546454419073416749341812 | 43 | 61 |
161 | 2147108966833950371150511730593386698017412 | 43 | 61 |
160 | 2106935294299775474599954745779924925396012 | 43 | 61 |
159 | 2106902281191302045590955402031911822096012 | 43 | 61 |
158 | 1416696065500088921662661298800055606966141 | 43 | 61 |
157 | 1414883972971911767319137671191792793884141 | 43 | 61 |
156 | 1010331096582278428458548248722856901330101 | 43 | 61 |
155 | 64515508991444322135253122344419980551546 | 41 | 59 |
154 | 61153138639139701434943410793193683135116 | 41 | 59 |
153 | 879878999661878204161402878166999878978 | 39 | 56 |
152 | 879348262202819129818921918202262843978 | 39 | 56 |
151 | 45958282654026060755706062045628285954 | 38 | 54 |
150 | 9835554837464633869683364647384555389 | 37 | 53 |
149 | 9596045768849458689868549488675406959 | 37 | 53 |
148 | 9505227132110846796976480112317225059 | 37 | 53 |
147 | 8467638770573174655564713750778367648 | 37 | 53 |
146 | 8183225575843802043402083485755223818 | 37 | 53 |
145 | 8145978316763435541455343676138795418 | 37 | 53 |
144 | 8140197799388539232329358839977910418 | 37 | 53 |
143 | 685120603841801367763108148306021586 | 36 | 52 |
142 | 602117076566221263362122665670711206 | 36 | 52 |
141 | 215355547165064584485460561745553512 | 36 | 51 |
140 | 106007162214551780087155412261700601 | 36 | 51 |
139 | 7748092041062101661012601402908477 | 34 | 49 |
138 | 6950267776950891441980596777620596 | 34 | 49 |
137 | 186838521546391111193645125838681 | 33 | 47 |
136 | 186162880909630434036909088261681 | 33 | 47 |
135 | 186162396111968171869111693261681 | 33 | 47 |
134 | 159171014284036444630482410171951 | 33 | 47 |
133 | 151998543003841676148300345899151 | 33 | 47 |
132 | 151998059721974171479127950899151 | 33 | 47 |
131 | 87653343665645377354656634335678 | 32 | 46 |
130 | 6297024459737003007379544207926 | 31 | 45 |
129 | 6292788805324353534235088872926 | 31 | 45 |
128 | 4572400421665334335661240042754 | 31 | 44 |
127 | 920049038842450054248830940029 | 30 | 43 |
126 | 863908970332451154233079809368 | 30 | 43 |
125 | 68123866829364346392866832186 | 29 | 42 |
124 | 60795457035659595653075459706 | 29 | 42 |
123 | 41618751128915351982115781614 | 29 | 41 |
122 | 31891884714945654941748819813 | 29 | 41 |
121 | 31417977787079697078777971413 | 29 | 41 |
120 | 31417972547345054374527971413 | 29 | 41 |
119 | 31416063242381218324236061413 | 29 | 41 |
118 | 31098164866494349466846189013 | 29 | 41 |
117 | 31029154725081318052745192013 | 29 | 41 |
116 | 24055999711386268311799955042 | 29 | 41 |
115 | 14626535770963836907753562641 | 29 | 41 |
114 | 10644461464435453446416444601 | 29 | 41 |
113 | 10233317539812221893571333201 | 29 | 41 |
112 | 775981910664202466019189577 | 27 | 39 |
111 | 775939410541000145014939577 | 27 | 39 |
110 | 775934282861868168282439577 | 27 | 39 |
109 | 691774458431323134854477196 | 27 | 39 |
108 | 618762750915151519057267816 | 27 | 39 |
107 | 613119004633151336400911316 | 27 | 39 |
106 | 18652160016866861006125681 | 26 | 37 |
105 | 15636166151988915166163651 | 26 | 37 |
104 | 15631144307799770344113651 | 26 | 37 |
103 | 8785720289021209820275878 | 25 | 36 |
102 | 679116049774477940611976 | 24 | 35 |
101 | 89750520757375702505798 | 23 | 33 |
100 | 89750054183338145005798 | 23 | 33 |
99 | 89707442492029424470798 | 23 | 33 |
98 | 89378795951815959787398 | 23 | 33 |
97 | 89373703300800330737398 | 23 | 33 |
96 | 89373235305150353237398 | 23 | 33 |
95 | 86985339391719393358968 | 23 | 33 |
94 | 86980677074747077608968 | 23 | 33 |
93 | 86502759048484095720568 | 23 | 33 |
92 | 86502714378987341720568 | 23 | 33 |
91 | 83732343311311334323738 | 23 | 33 |
90 | 83208975695159657980238 | 23 | 33 |
89 | 83208405647274650480238 | 23 | 33 |
88 | 4185459800880089545814 | 22 | 31 |
87 | 3441731791881971371443 | 22 | 31 |
86 | 2015496835005386945102 | 22 | 31 |
85 | 1073077634334367703701 | 22 | 31 |
84 | 1071727595775957271701 | 22 | 31 |
83 | 69258642177124685296 | 20 | 29 |
82 | 66819814955941891866 | 20 | 29 |
81 | 61034375000057343016 | 20 | 29 |
80 | 22192753388335729122 | 20 | 28 |
79 | 1877026246426207781 | 19 | 27 |
78 | 1872666725276662781 | 19 | 27 |
77 | 1872168528258612781 | 19 | 27 |
76 | 1560890621260980651 | 19 | 27 |
75 | 1560393839383930651 | 19 | 27 |
74 | 1527447408047447251 | 19 | 27 |
73 | 67546323432364576 | 17 | 25 |
72 | 62596751915769526 | 17 | 25 |
71 | 28453146364135482 | 17 | 24 |
70 | 28012639493621082 | 17 | 24 |
69 | 25856101110165852 | 17 | 24 |
68 | 25851377577315852 | 17 | 24 |
67 | 8671162112611768 | 16 | 23 |
66 | 8066449229446608 | 16 | 23 |
65 | 8061113993111608 | 16 | 23 |
64 | 658768979867856 | 15 | 22 |
63 | 653311040113356 | 15 | 22 |
62 | 473696969696374 | 15 | 21 |
61 | 473643646346374 | 15 | 21 |
60 | 449933929339944 | 15 | 21 |
59 | 449488282884944 | 15 | 21 |
58 | 445389595983544 | 15 | 21 |
57 | 445384969483544 | 15 | 21 |
56 | 445336272633544 | 15 | 21 |
55 | 378573424375873 | 15 | 21 |
54 | 374476969674473 | 15 | 21 |
53 | 301537434735103 | 15 | 21 |
52 | 279119383911972 | 15 | 21 |
51 | 206903565309602 | 15 | 21 |
50 | 206725444527602 | 15 | 21 |
49 | 202304515403202 | 15 | 21 |
48 | 176265757562671 | 15 | 21 |
47 | 176071838170671 | 15 | 21 |
46 | 172849181948271 | 15 | 21 |
45 | 172102080201271 | 15 | 21 |
44 | 132412434214231 | 15 | 21 |
43 | 107793080397701 | 15 | 21 |
42 | 107745787547701 | 15 | 21 |
41 | 103824717428301 | 15 | 21 |
40 | 103191131191301 | 15 | 21 |
39 | 7730173710377 | 13 | 19 |
38 | 6989062609896 | 13 | 19 |
37 | 6982578752896 | 13 | 19 |
36 | 6694978794966 | 13 | 19 |
35 | 6648130318466 | 13 | 19 |
34 | 6643369633466 | 13 | 19 |
33 | 6105769675016 | 13 | 19 |
32 | 2228261628222 | 13 | 18 |
31 | 12185058121 | 11 | 15 |
30 | 12114741121 | 11 | 15 |
29 | 6761551676 | 10 | 15 |
28 | 2893553982 | 10 | 14 |
27 | 2596886952 | 10 | 14 |
26 | 2512882152 | 10 | 14 |
25 | 836181638 | 9 | 13 |
24 | 836131638 | 9 | 13 |
23 | 831868138 | 9 | 13 |
22 | 831333138 | 9 | 13 |
21 | 808656808 | 9 | 13 |
20 | 65977956 | 8 | 12 |
19 | 47633674 | 8 | 11 |
18 | 30322303 | 8 | 11 |
17 | 27711772 | 8 | 11 |
16 | 10400401 | 8 | 11 |
15 | 10088001 | 8 | 11 |
14 | 18881 | 5 | 7 |
13 | 15751 | 5 | 7 |
12 | 1221 | 4 | 5 |
11 | 676 | 3 | 5 |
10 | 626 | 3 | 5 |
9 | 282 | 3 | 4 |
8 | 252 | 3 | 4 |
7 | 88 | 2 | 3 |
6 | 6 | 1 | 2 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 6 A029963 | L base 10 | L base 6 |
| Next > 10^23 | | |
118 | Prime! 36599233807670833299563 | 23 | 29 |
117 | 33461025859695852016433 | 23 | 29 |
116 | 32046696937973969664023 | 23 | 29 |
115 | 31442983675957638924413 | 23 | 29 |
114 | 27596928275057282969572 | 23 | 29 |
113 | 26387697060106079678362 | 23 | 29 |
112 | 4800062971441792600084 | 22 | 28 |
111 | 3951300420330240031593 | 22 | 28 |
110 | 3228607293993927068223 | 22 | 28 |
109 | 954705277777772507459 | 21 | 27 |
108 | 698624223676322426896 | 21 | 27 |
107 | 515942802363208249515 | 21 | 27 |
106 | 413110328121823011314 | 21 | 27 |
105 | 184042927656729240481 | 21 | 27 |
104 | 101486113646311684101 | 21 | 26 |
103 | 80695452588525459608 | 20 | 26 |
102 | 5761547475747451675 | 19 | 25 |
101 | 5283511046401153825 | 19 | 25 |
100 | 617599427724995716 | 18 | 23 |
99 | 76123829292832167 | 17 | 22 |
98 | 65332462626423356 | 17 | 22 |
97 | 63799978687999736 | 17 | 22 |
96 | 34283490709438243 | 17 | 22 |
95 | 14459868686895441 | 17 | 21 |
94 | 14441050405014441 | 17 | 21 |
93 | 12907568886570921 | 17 | 21 |
92 | 8020863443680208 | 16 | 21 |
91 | 5796663883666975 | 16 | 21 |
90 | 2806592662956082 | 16 | 20 |
89 | 900893585398009 | 15 | 20 |
88 | 596437282734695 | 15 | 19 |
87 | 585789323987585 | 15 | 19 |
86 | 521151929151125 | 15 | 19 |
85 | 480680444086084 | 15 | 19 |
84 | 422383797383224 | 15 | 19 |
83 | 395921848129593 | 15 | 19 |
82 | 389019363910983 | 15 | 19 |
81 | 359630212036953 | 15 | 19 |
80 | 309491626194903 | 15 | 19 |
79 | 285666464666582 | 15 | 19 |
78 | Prime! 155259838952551 | 15 | 19 |
77 | 80839044093808 | 14 | 18 |
76 | 51910622601915 | 14 | 18 |
75 | 41443999934414 | 14 | 18 |
74 | 10268799786201 | 14 | 17 |
73 | 9766560656679 | 13 | 17 |
72 | 8288882888828 | 13 | 17 |
71 | 6873812183786 | 13 | 17 |
70 | 3695202025963 | 13 | 17 |
69 | 3693222223963 | 13 | 17 |
68 | 3691422241963 | 13 | 17 |
67 | 3666926296663 | 13 | 17 |
66 | 1808482848081 | 13 | 16 |
65 | 75535653557 | 11 | 14 |
64 | 71771717717 | 11 | 14 |
63 | 61662426616 | 11 | 14 |
62 | 18013531081 | 11 | 14 |
61 | 12482428421 | 11 | 13 |
60 | Prime! 11271517211 | 11 | 13 |
59 | 8801331088 | 10 | 13 |
58 | 7786556877 | 10 | 13 |
57 | 7111881117 | 10 | 13 |
56 | 4368778634 | 10 | 13 |
55 | 3733113373 | 10 | 13 |
54 | 342050243 | 9 | 11 |
53 | 310393013 | 9 | 11 |
52 | 290222092 | 9 | 11 |
51 | Prime! 108151801 | 9 | 11 |
50 | 104888401 | 9 | 11 |
49 | 103656301 | 9 | 11 |
48 | 24466442 | 8 | 10 |
47 | 15266251 | 8 | 10 |
46 | 9081809 | 7 | 9 |
45 | 8164618 | 7 | 9 |
44 | 6983896 | 7 | 9 |
43 | 6934396 | 7 | 9 |
42 | 6901096 | 7 | 9 |
41 | 5799975 | 7 | 9 |
40 | 5766675 | 7 | 9 |
39 | 5733375 | 7 | 9 |
38 | 5482845 | 7 | 9 |
37 | 5433345 | 7 | 9 |
36 | 5400045 | 7 | 9 |
35 | 5182815 | 7 | 9 |
34 | 5100015 | 7 | 9 |
33 | 4849484 | 7 | 9 |
32 | 4598954 | 7 | 9 |
31 | 4565654 | 7 | 9 |
30 | 4516154 | 7 | 9 |
29 | 4298924 | 7 | 9 |
28 | 4265624 | 7 | 9 |
27 | 4232324 | 7 | 9 |
26 | 3097903 | 7 | 9 |
25 | 1867681 | 7 | 9 |
24 | 909909 | 6 | 8 |
23 | 808808 | 6 | 8 |
22 | 168861 | 6 | 7 |
21 | 74647 | 5 | 7 |
20 | 39893 | 5 | 6 |
19 | 22022 | 5 | 6 |
18 | 7777 | 4 | 6 |
17 | 7667 | 4 | 5 |
16 | 1441 | 4 | 5 |
15 | 868 | 3 | 4 |
14 | 777 | 3 | 4 |
13 | 434 | 3 | 4 |
12 | 343 | 3 | 4 |
11 | Prime! 191 | 3 | 3 |
10 | 141 | 3 | 3 |
9 | 111 | 3 | 3 |
8 | 55 | 2 | 3 |
7 | Prime! 7 | 1 | 2 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 7 A029964 | L base 10 | L base 7 |
| Next > 10^23 | | |
81 | 67949117406960471194976 | 23 | 28 |
80 | 65437371449594417373456 | 23 | 27 |
79 | 47019576850605867591074 | 23 | 27 |
78 | 29627836901610963872692 | 23 | 27 |
77 | 24392712895759821729342 | 23 | 27 |
76 | 20722521562726512522702 | 23 | 27 |
75 | Prime! 17797767519791576779771 | 23 | 27 |
74 | 8421198978888798911248 | 22 | 26 |
73 | 942538532686235835249 | 21 | 25 |
72 | 755667017939710766557 | 21 | 25 |
71 | 617161162878261161716 | 21 | 25 |
70 | 507598924909429895705 | 21 | 25 |
69 | 400003717000717300004 | 21 | 25 |
68 | 397793140060041397793 | 21 | 25 |
67 | 240176399252993671042 | 21 | 25 |
66 | 22244818422481844222 | 20 | 23 |
65 | 9100681853581860019 | 19 | 23 |
64 | 7869047624267409687 | 19 | 23 |
63 | 99739047074093799 | 17 | 21 |
62 | 98709855955890789 | 17 | 21 |
61 | 67122911011922176 | 17 | 20 |
60 | 65045053335054056 | 17 | 20 |
59 | 42074205350247024 | 17 | 20 |
58 | 7584718778174857 | 16 | 19 |
57 | 3179862222689713 | 16 | 19 |
56 | 229716363617922 | 15 | 17 |
55 | 215821424128512 | 15 | 17 |
54 | 208063959360802 | 15 | 17 |
53 | 201946010649102 | 15 | 17 |
52 | 85161755716158 | 14 | 17 |
51 | 74194966949147 | 14 | 17 |
50 | 49929477492994 | 14 | 17 |
49 | 23419766791432 | 14 | 16 |
48 | 8868067608688 | 13 | 16 |
47 | 6750989890576 | 13 | 16 |
46 | 4158563658514 | 13 | 15 |
45 | 2928299928292 | 13 | 15 |
44 | 2745382835472 | 13 | 15 |
43 | 2680120210862 | 13 | 154 |
42 | 2451956591542 | 13 | 15 |
41 | 2264092904622 | 13 | 15 |
40 | 1269880889621 | 13 | 15 |
39 | 775350053577 | 12 | 15 |
38 | 426970079624 | 12 | 14 |
37 | 95365056359 | 11 | 13 |
36 | 91023932019 | 11 | 13 |
35 | Prime! 90750705709 | 11 | 13 |
34 | 75431213457 | 11 | 13 |
33 | 75016161057 | 11 | 13 |
32 | 65796069756 | 11 | 13 |
31 | 64454545446 | 11 | 13 |
30 | 61454945416 | 11 | 13 |
29 | 45862226854 | 11 | 13 |
28 | 40130703104 | 11 | 13 |
27 | 25699499652 | 11 | 13 |
26 | 858474858 | 9 | 11 |
25 | 657494756 | 9 | 11 |
24 | 638828836 | 9 | 11 |
23 | 485494584 | 9 | 11 |
22 | 466828664 | 9 | 11 |
21 | 230474032 | 9 | 10 |
20 | 61255216 | 8 | 10 |
19 | Prime! 9470749 | 7 | 9 |
18 | 6958596 | 7 | 9 |
17 | 6597956 | 7 | 9 |
16 | 4602064 | 7 | 8 |
15 | 2137312 | 7 | 8 |
14 | 65656 | 5 | 6 |
13 | Prime! 16561 | 5 | 5 |
12 | 292 | 3 | 3 |
11 | 242 | 3 | 3 |
10 | 171 | 3 | 3 |
9 | 121 | 3 | 3 |
8 | 8 | 1 | 2 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 8 (octal) A029804 | L base 10 | L base 8 |
| Next > 10^34 | | |
131 | 6091280052696093663906962500821906 | 34 | 38 |
130 | 1141897415190856226580915147981411 | 34 | 37 |
129 | 994090604572440313044275406090499 | 33 | 37 |
128 | 858037680965763515367569086730858 | 33 | 37 |
127 | 835523283332531656135233382325538 | 33 | 37 |
126 | 587617843046963898369640348716785 | 33 | 37 |
125 | 564341093237119818911732390143465 | 33 | 37 |
124 | 355309407484416525614484704903553 | 33 | 37 |
123 | 89879768957194388349175986797898 | 32 | 36 |
122 | 38525491344366033066344319452583 | 32 | 35 |
121 | 17181377425940999904952477318171 | 32 | 35 |
120 | 3792033197162477742617913302973 | 31 | 34 |
119 | 3377242440477033307740442427733 | 31 | 34 |
118 | 2903795477478606068747745973092 | 31 | 34 |
117 | 1949700108422995992248010079491 | 31 | 34 |
116 | 98444861536975557963516844489 | 29 | 33 |
115 | 79443858725719191752785834497 | 29 | 33 |
114 | 68607705200272427200250770686 | 29 | 32 |
113 | 62119978192296969229187991126 | 29 | 32 |
112 | 36386515691205650219651568363 | 29 | 32 |
111 | 20466353976385158367935366402 | 29 | 32 |
110 | 2674972302079669702032794762 | 28 | 31 |
109 | 619057787673525376787750916 | 27 | 30 |
108 | 138668092301868103290866831 | 27 | 29 |
107 | 107184009820444028900481701 | 27 | 29 |
106 | 82268662917644671926686228 | 26 | 29 |
105 | 41155431112055021113455114 | 26 | 29 |
104 | 9504411213036303121144059 | 25 | 28 |
103 | 9502917646378736467192059 | 25 | 28 |
102 | 9500465760922290675640059 | 25 | 28 |
101 | 6857776528536358256777586 | 25 | 28 |
100 | 3760849013081803109480673 | 25 | 28 |
99 | 2091103570615160753011902 | 25 | 27 |
98 | 1646819988303038899186461 | 25 | 27 |
97 | 890170268088880862071098 | 24 | 27 |
96 | 315610027864468720016513 | 24 | 27 |
95 | 39752656623032665625793 | 23 | 26 |
94 | 36258340143534104385263 | 23 | 25 |
93 | Prime! 34125703495359430752143 | 23 | 25 |
92 | 17395259698289695259371 | 23 | 25 |
91 | 15863125024242052136851 | 23 | 25 |
90 | 7393237064774607323937 | 22 | 25 |
89 | 2503498805115088943052 | 22 | 24 |
88 | 579927810111018729975 | 21 | 23 |
87 | 556362998454899263655 | 21 | 23 |
86 | 552868393727393868255 | 21 | 23 |
85 | 494635531909135536494 | 21 | 23 |
84 | 473317002010200713374 | 21 | 23 |
83 | 379080765242567080973 | 21 | 23 |
82 | 375586160515061685573 | 21 | 23 |
81 | 375183597404795381573 | 21 | 23 |
80 | 371911868919868119173 | 21 | 23 |
79 | 202693712161217396202 | 21 | 23 |
78 | 77580854944945808577 | 20 | 23 |
77 | 44643103022030134644 | 20 | 22 |
76 | 32300361188116300323 | 20 | 22 |
75 | 9843207767677023489 | 19 | 22 |
74 | 3800003150513000083 | 19 | 21 |
73 | 3676077166617706763 | 19 | 21 |
72 | 2650626939396260562 | 19 | 21 |
71 | 2445420079700245442 | 19 | 21 |
70 | 1219071169611709121 | 19 | 21 |
69 | 136053358853350631 | 18 | 19 |
68 | 105080469964080501 | 18 | 19 |
67 | 96876827472867869 | 17 | 19 |
66 | 84199148484199148 | 17 | 19 |
65 | 84172361516327148 | 17 | 19 |
64 | 70333341514333307 | 17 | 19 |
63 | 57234017271043275 | 17 | 19 |
62 | 45576210301267554 | 17 | 19 |
61 | 45534430503443554 | 17 | 19 |
60 | 33239024742093233 | 17 | 19 |
59 | 685854414458586 | 15 | 17 |
58 | 683113474311386 | 15 | 17 |
57 | 666551535155666 | 15 | 17 |
56 | 393073414370393 | 15 | 17 |
55 | 359934111439953 | 15 | 17 |
54 | 224785646587422 | 15 | 16 |
53 | 185850999058581 | 15 | 16 |
52 | 112745383547211 | 15 | 16 |
51 | 34926999962943 | 14 | 15 |
50 | 28719555591782 | 14 | 15 |
49 | 13994688649931 | 14 | 15 |
48 | 7712150512177 | 13 | 15 |
47 | 5853143413585 | 13 | 15 |
46 | 5227529257225 | 13 | 15 |
45 | 390894498093 | 12 | 13 |
44 | 294378873492 | 12 | 13 |
43 | 94466666449 | 11 | 13 |
42 | 94029892049 | 11 | 13 |
41 | 20855555802 | 11 | 12 |
40 | 4637337364 | 10 | 11 |
39 | 4480880844 | 10 | 11 |
38 | 4424994244 | 10 | 11 |
37 | 2464554642 | 10 | 11 |
36 | 1820330281 | 10 | 11 |
35 | 799535997 | 9 | 10 |
34 | 719848917 | 9 | 10 |
33 | 532898235 | 9 | 10 |
32 | 130535031 | 9 | 9 |
31 | 55366355 | 8 | 9 |
30 | 4198914 | 7 | 8 |
29 | Prime! 1970791 | 7 | 7 |
28 | 1935391 | 7 | 7 |
27 | Prime! 1496941 | 7 | 7 |
26 | 660066 | 6 | 7 |
25 | 628826 | 6 | 7 |
24 | 207702 | 6 | 6 |
23 | 30303 | 5 | 5 |
22 | Prime! 30103 | 5 | 5 |
21 | 26662 | 5 | 5 |
20 | 26462 | 5 | 5 |
19 | Prime! 13331 | 5 | 5 |
18 | 13131 | 5 | 5 |
17 | 8778 | 4 | 5 |
16 | 3663 | 4 | 4 |
15 | 585 | 3 | 4 |
14 | 414 | 3 | 3 |
13 | Prime! 373 | 3 | 3 |
12 | 333 | 3 | 3 |
11 | 292 | 3 | 3 |
10 | 121 | 3 | 3 |
9 | 9 | 1 | 2 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 9 A029965 | L base 10 | L base 9 |
| Next > 10^23 | | |
75 | 7623722153663512273267 | 22 | 23 |
74 | 4997878480660848787994 | 22 | 23 |
73 | 3014849211991129484103 | 22 | 23 |
72 | 1895043293663923405981 | 22 | 23 |
71 | 1685380415005140835861 | 22 | 23 |
70 | 104618510424015816401 | 21 | 21 |
69 | 89349349588594394398 | 20 | 21 |
68 | 82148829699692884128 | 20 | 21 |
67 | 53293648433484639235 | 20 | 21 |
66 | 547906983389609745 | 18 | 19 |
65 | 194216405504612491 | 18 | 19 |
64 | 190076027720670091 | 18 | 19 |
63 | 14802554345520841 | 17 | 17 |
62 | 13577478487477531 | 17 | 17 |
61 | 11199701210799111 | 17 | 17 |
60 | 11111059395011111 | 17 | 17 |
59 | 5987078778707895 | 16 | 17 |
58 | 4782537117352874 | 16 | 17 |
57 | 149819212918941 | 15 | 15 |
56 | 149285434582941 | 15 | 15 |
55 | 101904010409101 | 15 | 15 |
54 | 42143900934124 | 14 | 15 |
53 | 41275222257214 | 14 | 15 |
52 | 2081985891802 | 13 | 13 |
51 | 2024099904202 | 13 | 13 |
50 | 2005542455002 | 13 | 13 |
49 | Prime! 1400232320041 | 13 | 13 |
48 | 827362263728 | 12 | 13 |
47 | 9565335659 | 10 | 11 |
46 | 8901111098 | 10 | 11 |
45 | 5435665345 | 10 | 11 |
44 | 382000283 | 9 | 9 |
43 | 232000232 | 9 | 9 |
42 | 181434181 | 9 | 9 |
41 | 167191761 | 9 | 9 |
40 | 65666656 | 8 | 9 |
39 | 3360633 | 7 | 7 |
38 | 3303033 | 7 | 7 |
37 | 3171713 | 7 | 7 |
36 | 3163613 | 7 | 7 |
35 | 3122213 | 7 | 7 |
34 | 3114113 | 7 | 7 |
33 | Prime! 3106013 | 7 | 7 |
32 | 2450542 | 7 | 7 |
31 | 2442442 | 7 | 7 |
30 | 2434342 | 7 | 7 |
29 | 2401042 | 7 | 7 |
28 | 1885881 | 7 | 7 |
27 | 1877781 | 7 | 7 |
26 | 1828281 | 7 | 7 |
25 | 1721271 | 7 | 7 |
24 | 1713171 | 7 | 7 |
23 | 1540451 | 7 | 7 |
22 | 626626 | 6 | 7 |
21 | 50605 | 5 | 5 |
20 | 42324 | 5 | 5 |
19 | 27472 | 5 | 5 |
18 | 25752 | 5 | 5 |
17 | 6886 | 4 | 5 |
16 | 656 | 3 | 3 |
15 | 646 | 3 | 3 |
14 | 555 | 3 | 3 |
13 | 464 | 3 | 3 |
12 | Prime! 373 | 3 | 3 |
11 | 282 | 3 | 3 |
10 | Prime! 191 | 3 | 3 |
9 | 8 | 1 | 1 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 11 A029966 | L base 10 | L base 11 |
| Next > 10^21 | | |
83 | 903253059636950352309 | 21 | 21 |
82 | 771341832818238143177 | 21 | 21 |
81 | 686833076121670338686 | 21 | 21 |
80 | 671136738666837631176 | 21 | 20 |
79 | 7861736017106371687 | 19 | 19 |
78 | 6411682614162861146 | 19 | 19 |
77 | 4244691467641964424 | 19 | 18 |
76 | 64224652625642246 | 17 | 17 |
75 | 62712119691121726 | 17 | 17 |
74 | 56831729892713865 | 17 | 17 |
73 | 56681764446718665 | 17 | 17 |
72 | 54470642224607445 | 17 | 17 |
71 | 463906656609364 | 15 | 15 |
70 | 259799383997952 | 15 | 14 |
69 | 251569181965152 | 15 | 14 |
68 | 218254595452812 | 15 | 14 |
67 | 218210353012812 | 15 | 14 |
66 | 218053292350812 | 15 | 14 |
65 | 4798641468974 | 13 | 13 |
64 | 2926072706292 | 13 | 12 |
63 | 2909278729092 | 13 | 12 |
62 | 42521012524 | 11 | 11 |
61 | 39453235493 | 11 | 11 |
60 | 39276067293 | 11 | 11 |
59 | Prime! 999454999 | 9 | 9 |
58 | Prime! 998111899 | 9 | 9 |
57 | 537181735 | 9 | 9 |
56 | 492080294 | 9 | 9 |
55 | 489525984 | 9 | 9 |
54 | 362151263 | 9 | 9 |
53 | 356777653 | 9 | 9 |
52 | 8844488 | 7 | 7 |
51 | 8832388 | 7 | 7 |
50 | 8820288 | 7 | 7 |
49 | 8758578 | 7 | 7 |
48 | 8746478 | 7 | 7 |
47 | 8734378 | 7 | 7 |
46 | 8722278 | 7 | 7 |
45 | 8710178 | 7 | 7 |
44 | 7292927 | 7 | 7 |
43 | 7280827 | 7 | 7 |
42 | 5741475 | 7 | 7 |
41 | 5667665 | 7 | 7 |
40 | 5655565 | 7 | 7 |
39 | 5643465 | 7 | 7 |
38 | 4593954 | 7 | 7 |
37 | 4581854 | 7 | 7 |
36 | 4422244 | 7 | 7 |
35 | 4410144 | 7 | 7 |
34 | 4348434 | 7 | 7 |
33 | 3372733 | 7 | 7 |
32 | 3360633 | 7 | 7 |
31 | 3298923 | 7 | 7 |
30 | Prime! 3286823 | 7 | 7 |
29 | 3274723 | 7 | 7 |
28 | 3262623 | 7 | 7 |
27 | 2968692 | 7 | 7 |
26 | 2956592 | 7 | 7 |
25 | 75157 | 5 | 5 |
24 | 63936 | 5 | 5 |
23 | 52825 | 5 | 5 |
22 | 49294 | 5 | 5 |
21 | 40504 | 5 | 5 |
20 | Prime! 38183 | 5 | 5 |
19 | 26962 | 5 | 5 |
18 | 909 | 3 | 3 |
17 | 898 | 3 | 3 |
16 | Prime! 787 | 3 | 3 |
15 | 676 | 3 | 3 |
14 | 565 | 3 | 3 |
13 | 454 | 3 | 3 |
12 | 343 | 3 | 3 |
11 | 232 | 3 | 3 |
10 | 9 | 1 | 1 |
9 | 8 | 1 | 1 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 12 A029967 | L base 10 | L base 12 |
| Next > 10^21 | | |
61 | 302002264282462200203 | 21 | 19 |
60 | 283631008131800136382 | 21 | 19 |
59 | 216811149242941118612 | 21 | 19 |
58 | 52975769933996757925 | 20 | 19 |
57 | 3967113331333117693 | 19 | 18 |
56 | 3345454646464545433 | 19 | 18 |
55 | 1834592905092954381 | 19 | 17 |
54 | 1312161375731612131 | 19 | 17 |
53 | 1310127138317210131 | 19 | 17 |
52 | 926617966669716629 | 18 | 17 |
51 | 418955743347559814 | 18 | 17 |
50 | 411528847748825114 | 18 | 17 |
49 | 90145891619854109 | 17 | 16 |
48 | 16330182728103361 | 17 | 16 |
47 | 8330107227010338 | 16 | 15 |
46 | 5128288228828215 | 16 | 15 |
45 | 1643600330063461 | 16 | 15 |
44 | 62218411481226 | 14 | 13 |
43 | 10171466417101 | 14 | 13 |
42 | 4538684868354 | 13 | 12 |
41 | 357496694753 | 12 | 11 |
40 | 122507705221 | 12 | 11 |
39 | 73183838137 | 11 | 11 |
38 | 57644144675 | 11 | 10 |
37 | 50992729905 | 11 | 10 |
36 | 36265856263 | 11 | 10 |
35 | 25712321752 | 11 | 10 |
34 | 1393223931 | 10 | 9 |
33 | 796212697 | 9 | 9 |
32 | Prime! 713171317 | 9 | 9 |
31 | 520020025 | 9 | 9 |
30 | 293373392 | 9 | 8 |
29 | 139979931 | 9 | 8 |
28 | 133373331 | 9 | 8 |
27 | 9963699 | 7 | 7 |
26 | 8364638 | 7 | 7 |
25 | 5641465 | 7 | 7 |
24 | 3192913 | 7 | 7 |
23 | 646646 | 6 | 6 |
22 | 88888 | 5 | 5 |
21 | 43934 | 5 | 5 |
20 | 35953 | 5 | 5 |
19 | 8008 | 4 | 4 |
18 | 1111 | 4 | 3 |
17 | Prime! 797 | 3 | 3 |
16 | 737 | 3 | 3 |
15 | 676 | 3 | 3 |
14 | 616 | 3 | 3 |
13 | 555 | 3 | 3 |
12 | Prime! 181 | 3 | 3 |
11 | Prime! 11 | 2 | 1 |
10 | 9 | 1 | 1 |
9 | 8 | 1 | 1 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 13 A029968 | L base 10 | L base 13 |
| Next > 10^21 | | |
86 | 995165177898771561599 | 21 | 19 |
85 | Prime! 970015486464684510079 | 21 | 19 |
84 | 960085137626731580069 | 21 | 19 |
83 | 958539908323809935859 | 21 | 19 |
82 | 931953637343736359139 | 21 | 19 |
81 | 832587648262846785238 | 21 | 19 |
80 | 364370458757854073463 | 21 | 19 |
79 | 292503721141127305292 | 21 | 19 |
78 | 277258880242088852772 | 21 | 19 |
77 | 162238140040041832261 | 21 | 19 |
76 | Prime! 7520859392939580257 | 19 | 17 |
75 | 5544882623262884455 | 19 | 17 |
74 | 4002414299924142004 | 19 | 17 |
73 | 3976149369639416793 | 19 | 17 |
72 | 3898701537351078983 | 19 | 17 |
71 | 2832604939394062382 | 19 | 17 |
70 | 1836905795975096381 | 19 | 17 |
69 | 49164413731446194 | 17 | 15 |
68 | 45850453835405854 | 17 | 15 |
67 | 37079407070497073 | 17 | 15 |
66 | 7273324774233727 | 16 | 15 |
65 | 672804838408276 | 15 | 14 |
64 | 637013161310736 | 15 | 14 |
63 | 237923878329732 | 15 | 13 |
62 | 235604838406532 | 15 | 13 |
61 | 60808311380806 | 14 | 13 |
60 | 54324199142345 | 14 | 13 |
59 | 1624981894261 | 13 | 11 |
58 | 1199309039911 | 13 | 11 |
57 | 789679976987 | 12 | 11 |
56 | 22087878022 | 11 | 10 |
55 | 8390660938 | 10 | 9 |
54 | 8381551838 | 10 | 9 |
53 | 7497557947 | 10 | 9 |
52 | 7488448847 | 10 | 9 |
51 | 6933223396 | 10 | 9 |
50 | 6924114296 | 10 | 9 |
49 | 4378778734 | 10 | 9 |
48 | 4369669634 | 10 | 9 |
47 | 3814444183 | 10 | 9 |
46 | 3805335083 | 10 | 9 |
45 | 3071001703 | 10 | 9 |
44 | 952404259 | 9 | 9 |
43 | 668666866 | 9 | 8 |
42 | 656353656 | 9 | 8 |
41 | 62611626 | 8 | 7 |
40 | 47099074 | 8 | 7 |
39 | 44166144 | 8 | 7 |
38 | 33299233 | 8 | 7 |
37 | 23877832 | 8 | 7 |
36 | 23177132 | 8 | 7 |
35 | 20944902 | 8 | 7 |
34 | 20244202 | 8 | 7 |
33 | 13055031 | 8 | 7 |
32 | 10122101 | 8 | 7 |
31 | 8864688 | 7 | 7 |
30 | 2906092 | 7 | 6 |
29 | 2832382 | 7 | 6 |
28 | 2713172 | 7 | 6 |
27 | 2377732 | 7 | 6 |
26 | 311113 | 6 | 5 |
25 | 56265 | 5 | 5 |
24 | 26362 | 5 | 4 |
23 | 25452 | 5 | 4 |
22 | 24542 | 5 | 4 |
21 | 8778 | 4 | 4 |
20 | 6776 | 4 | 4 |
19 | 1111 | 4 | 3 |
18 | Prime! 797 | 3 | 3 |
17 | 666 | 3 | 3 |
16 | 575 | 3 | 3 |
15 | 444 | 3 | 3 |
14 | Prime! 353 | 3 | 3 |
13 | Prime! 313 | 3 | 3 |
12 | 222 | 3 | 3 |
11 | Prime! 11 | 2 | 1 |
10 | 9 | 1 | 1 |
9 | 8 | 1 | 1 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 14 A029969 | L base 10 | L base 14 |
| Next >10^21 | | |
78 | 756517966373669715657 | 21 | 19 |
77 | 535729030313030927535 | 21 | 19 |
76 | 531011782080287110135 | 21 | 19 |
75 | 59380193522539108395 | 20 | 18 |
74 | 59236342599524363295 | 20 | 18 |
73 | 26916102000020161962 | 20 | 17 |
72 | 15595183733738159551 | 20 | 17 |
71 | 15319521066012591351 | 20 | 17 |
70 | 7327284858584827237 | 19 | 17 |
69 | 7209611033301169027 | 19 | 17 |
68 | 6158981849481898516 | 19 | 17 |
67 | 6114506601066054116 | 19 | 17 |
66 | 6005359623269535006 | 19 | 17 |
65 | 3737334250524337373 | 19 | 17 |
64 | 3545494238324945453 | 19 | 17 |
63 | 546546033330645645 | 18 | 16 |
62 | 78325277777252387 | 17 | 15 |
61 | 69580792329708596 | 17 | 15 |
60 | 68300282528200386 | 17 | 15 |
59 | 57047363236374075 | 17 | 15 |
58 | 26072218381227062 | 17 | 15 |
57 | 24514444744441542 | 17 | 15 |
56 | 13955648684655931 | 17 | 15 |
55 | 5902037117302095 | 16 | 14 |
54 | 765611080116567 | 15 | 13 |
53 | 756559989955657 | 15 | 13 |
52 | 692021131120296 | 15 | 13 |
51 | 611552272255116 | 15 | 13 |
50 | 475794747497574 | 15 | 13 |
49 | 306149949941603 | 15 | 13 |
48 | 253675545576352 | 15 | 13 |
47 | 236070676070632 | 15 | 13 |
46 | 5813343433185 | 13 | 12 |
45 | 5542179712455 | 13 | 12 |
44 | 5530138310355 | 13 | 12 |
43 | 5507474747055 | 13 | 12 |
42 | 5105070705015 | 13 | 12 |
41 | 3984321234893 | 13 | 11 |
40 | 2428022208242 | 13 | 11 |
39 | 1098445448901 | 13 | 11 |
38 | 1031186811301 | 13 | 11 |
37 | 695256652596 | 12 | 11 |
36 | 549905509945 | 12 | 11 |
35 | 518032230815 | 12 | 11 |
34 | 508628826805 | 12 | 11 |
33 | 17085058071 | 11 | 9 |
32 | Prime! 14203330241 | 11 | 9 |
31 | 11652825611 | 11 | 9 |
30 | 10476867401 | 11 | 9 |
29 | 6758008576 | 10 | 9 |
28 | 5736116375 | 10 | 9 |
27 | 595121595 | 9 | 8 |
26 | 564303465 | 9 | 8 |
25 | 535505535 | 9 | 8 |
24 | 9813189 | 7 | 7 |
23 | 9578759 | 7 | 7 |
22 | Prime! 9046409 | 7 | 7 |
21 | 546645 | 6 | 6 |
20 | 420024 | 6 | 5 |
19 | 59095 | 5 | 5 |
18 | 39593 | 5 | 5 |
17 | 1111 | 4 | 3 |
16 | 999 | 3 | 3 |
15 | 858 | 3 | 3 |
14 | 717 | 3 | 3 |
13 | 464 | 3 | 3 |
12 | 323 | 3 | 3 |
11 | Prime! 11 | 2 | 1 |
10 | 9 | 1 | 1 |
9 | 8 | 1 | 1 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 15 A029970 | L base 10 | L base 15 |
| Next > 10^20 | | |
73 | 89551457844875415598 | 20 | 17 |
72 | 6747920044400297476 | 19 | 17 |
71 | 6736942564652496376 | 19 | 17 |
70 | 4038582985892858304 | 19 | 16 |
69 | 427791895598197724 | 18 | 15 |
68 | 194176722227671491 | 18 | 15 |
67 | 74940172027104947 | 17 | 15 |
66 | Prime! 74713184748131747 | 17 | 15 |
65 | 74712906560921747 | 17 | 15 |
64 | 74712663536621747 | 17 | 15 |
63 | 284111151111482 | 15 | 13 |
62 | 283652313256382 | 15 | 13 |
61 | 141527282725141 | 15 | 13 |
60 | 42629999992624 | 14 | 12 |
59 | 40700399300704 | 14 | 12 |
58 | 8004830384008 | 13 | 11 |
57 | 7485535355847 | 13 | 11 |
56 | 7305480845037 | 13 | 11 |
55 | 7073218123707 | 13 | 11 |
54 | 7073152513707 | 13 | 11 |
53 | 6908732378096 | 13 | 11 |
52 | 6907268627096 | 13 | 11 |
51 | 6799415149976 | 13 | 11 |
50 | 6637917197366 | 13 | 11 |
49 | 6624883884266 | 13 | 11 |
48 | 6624024204266 | 13 | 11 |
47 | 6498409048946 | 13 | 11 |
46 | 6498343438946 | 13 | 11 |
45 | 5938567658395 | 13 | 11 |
44 | 1131877781311 | 13 | 11 |
43 | 1131018101311 | 13 | 11 |
42 | 692465564296 | 12 | 11 |
41 | 615221122516 | 12 | 11 |
40 | 20281518202 | 11 | 9 |
39 | 17406960471 | 11 | 9 |
38 | 8083223808 | 10 | 9 |
37 | 8052662508 | 10 | 9 |
36 | 8050880508 | 10 | 9 |
35 | 2118008112 | 10 | 8 |
34 | 69455496 | 8 | 7 |
33 | 47999974 | 8 | 7 |
32 | 39399393 | 8 | 7 |
31 | 28300382 | 8 | 7 |
30 | 26144162 | 8 | 7 |
29 | 17577571 | 8 | 7 |
28 | 527725 | 6 | 5 |
27 | 515515 | 6 | 5 |
26 | 489984 | 6 | 5 |
25 | 477774 | 6 | 5 |
24 | 465564 | 6 | 5 |
23 | 67576 | 5 | 5 |
22 | 60106 | 5 | 5 |
21 | 25552 | 5 | 4 |
20 | 23632 | 5 | 4 |
19 | 2772 | 4 | 3 |
18 | 1551 | 4 | 3 |
17 | 979 | 3 | 3 |
16 | 949 | 3 | 3 |
15 | Prime! 919 | 3 | 3 |
14 | 888 | 3 | 3 |
13 | 858 | 3 | 3 |
12 | 828 | 3 | 3 |
11 | Prime! 11 | 2 | 1 |
10 | 9 | 1 | 1 |
9 | 8 | 1 | 1 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 16 A029731 | L base 10 | L base 16 |
| Next > 10^35 | | |
143 | 78894191945563376367336554919149887 | 35 | 29 |
142 | 67080932508181062626018180523908076 | 35 | 29 |
141 | 63835882500017943434971000528853836 | 35 | 29 |
140 | 63494339670590336663309507693349436 | 35 | 29 |
139 | 57486792197841346664314879129768475 | 35 | 29 |
138 | 46494289039985405650458993098249464 | 35 | 29 |
137 | 36453210513649714141794631501235463 | 35 | 29 |
136 | 25295130572966082928066927503159252 | 35 | 29 |
135 | 17193090890651737173715609809039171 | 35 | 29 |
134 | 589179652669993373399966256971985 | 33 | 28 |
133 | 324193060418058060850814060391423 | 33 | 27 |
132 | 322434305921054020450129503434223 | 33 | 27 |
131 | 188980399889523060325988993089881 | 33 | 27 |
130 | 157124568577706949607775865421751 | 33 | 27 |
129 | 153570961886167878761688169075351 | 33 | 27 |
128 | 74310782571520833802517528701347 | 32 | 27 |
127 | 47204048169521688612596184040274 | 32 | 27 |
126 | 9578569814271350531724189658759 | 31 | 26 |
125 | 7308855736123322233216375588037 | 31 | 26 |
124 | 1097029772441563651442779207901 | 31 | 25 |
123 | 494506253843744447348352605494 | 30 | 25 |
122 | 94694284038931313983048249649 | 29 | 25 |
121 | 94635334973676267637943353649 | 29 | 25 |
120 | 92167013075480608457031076129 | 29 | 25 |
119 | 17173681623264946232618637171 | 29 | 24 |
118 | 4526239847945445497489326254 | 28 | 23 |
117 | 4374175479923993299745714734 | 28 | 23 |
116 | 2092577007449999447007752902 | 28 | 23 |
115 | 875288502888989888205882578 | 27 | 23 |
114 | 374178087384212483780871473 | 27 | 23 |
113 | 319895202367858763202598913 | 27 | 23 |
112 | 107761099424686424990167701 | 27 | 22 |
111 | 107527175676494676571725701 | 27 | 22 |
110 | 43231887066299266078813234 | 26 | 22 |
109 | 37264989541299214598946273 | 26 | 22 |
108 | 9133129628211128269213319 | 25 | 21 |
107 | 1846781136065606311876481 | 25 | 21 |
106 | Prime! 1844238058789878508324481 | 25 | 21 |
105 | 1829860070497940700689281 | 25 | 21 |
104 | 1013945256196916525493101 | 25 | 20 |
103 | 66346948489298484964366 | 23 | 19 |
102 | 55582430128882103428555 | 23 | 19 |
101 | 51959301115851110395915 | 23 | 19 |
100 | 47844728597079582744874 | 23 | 19 |
99 | 47272007451015470027274 | 23 | 19 |
98 | 42001490723332709410024 | 23 | 19 |
97 | 36039109398989390193063 | 23 | 19 |
96 | 34570154169596145107543 | 23 | 19 |
95 | 34175825152525152857143 | 23 | 19 |
94 | 28527697711011779672582 | 23 | 19 |
93 | 21471020918081902017412 | 23 | 19 |
92 | 17322666253735266622371 | 23 | 19 |
91 | 15673605260306250637651 | 23 | 19 |
90 | 873954892151298459378 | 21 | 18 |
89 | 264605616858616506462 | 21 | 17 |
88 | 180766294494492667081 | 21 | 17 |
87 | 136228674727476822631 | 21 | 17 |
86 | 134132582494285231431 | 21 | 17 |
85 | 109640971252179046901 | 21 | 17 |
84 | 105086879868978680501 | 21 | 17 |
83 | 70701884511548810707 | 20 | 17 |
82 | 41317967000076971314 | 20 | 17 |
81 | 4616159308039516164 | 19 | 16 |
80 | 3884425716175244883 | 19 | 16 |
79 | 1137081002001807311 | 19 | 15 |
78 | 1118494603064948111 | 19 | 15 |
77 | 887358331133853788 | 18 | 15 |
76 | 535873916619378535 | 18 | 15 |
75 | 373019805508910373 | 18 | 15 |
74 | 70667820502876607 | 17 | 14 |
73 | 64634327472343646 | 17 | 14 |
72 | 32633196169133623 | 17 | 14 |
71 | 32000428082400023 | 17 | 14 |
70 | 5099347667439905 | 16 | 14 |
69 | 1668739779378661 | 16 | 13 |
68 | 816346555643618 | 15 | 13 |
67 | 522013020310225 | 15 | 13 |
66 | 509538666835905 | 15 | 13 |
65 | Prime! 397922151229793 | 15 | 13 |
64 | 45113388331154 | 14 | 12 |
63 | 17262755726271 | 14 | 11 |
62 | 14315822851341 | 14 | 11 |
61 | 7888195918887 | 13 | 11 |
60 | 6694367634966 | 13 | 11 |
59 | Prime! 3405684865043 | 13 | 11 |
58 | 2692667662962 | 13 | 11 |
57 | 2424058504242 | 13 | 11 |
56 | 1806872786081 | 13 | 11 |
55 | 1631645461361 | 13 | 11 |
54 | 1278169618721 | 13 | 11 |
53 | 390189981093 | 12 | 10 |
52 | 56702120765 | 11 | 9 |
51 | 51113531115 | 11 | 9 |
50 | 45961216954 | 11 | 9 |
49 | 43836363834 | 11 | 9 |
48 | 39762526793 | 11 | 9 |
47 | 32442924423 | 11 | 9 |
46 | 30144644103 | 11 | 9 |
45 | 28779897782 | 11 | 9 |
44 | 28586268582 | 11 | 9 |
43 | 26896769862 | 11 | 9 |
42 | 247969742 | 9 | 7 |
41 | 241090142 | 9 | 7 |
40 | Prime! 190080091 | 9 | 7 |
39 | 161131161 | 9 | 7 |
38 | 119919911 | 9 | 7 |
37 | 94544549 | 8 | 7 |
36 | 94355349 | 8 | 7 |
35 | 90999909 | 8 | 7 |
34 | 67433476 | 8 | 7 |
33 | 9616169 | 7 | 6 |
32 | 6487846 | 7 | 6 |
31 | 5614165 | 7 | 6 |
30 | 2485842 | 7 | 6 |
29 | 1612161 | 7 | 6 |
28 | 845548 | 6 | 5 |
27 | 749947 | 6 | 5 |
26 | 666666 | 6 | 5 |
25 | 512215 | 6 | 5 |
24 | 333333 | 6 | 5 |
23 | Prime! 98689 | 5 | 5 |
22 | 96369 | 5 | 5 |
21 | Prime! 94049 | 5 | 5 |
20 | 90209 | 5 | 5 |
19 | 41514 | 5 | 4 |
18 | 39593 | 5 | 4 |
17 | 3003 | 4 | 3 |
16 | 1991 | 4 | 3 |
15 | 979 | 3 | 3 |
14 | Prime! 787 | 3 | 3 |
13 | 626 | 3 | 3 |
12 | Prime! 353 | 3 | 3 |
11 | Prime! 11 | 2 | 1 |
10 | 9 | 1 | 1 |
9 | 8 | 1 | 1 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 17 A097855 | L base 10 | L base 17 |
| Next > 10^20 | | |
70 | 4552204672764022554 | 19 | 16 |
69 | 2552577177717752552 | 19 | 15 |
68 | 1561203188813021651 | 19 | 15 |
67 | 763504480084405367 | 18 | 15 |
66 | 395414871178414593 | 18 | 15 |
65 | 327224207702422723 | 18 | 15 |
64 | 174670389983076471 | 18 | 15 |
63 | 85437364146373458 | 17 | 14 |
62 | 47548262526284574 | 17 | 14 |
61 | 41285701710758214 | 17 | 14 |
60 | 40101963636910104 | 17 | 14 |
59 | 29287621712678292 | 17 | 14 |
58 | 20378349094387302 | 17 | 14 |
57 | 7351755005571537 | 16 | 13 |
56 | 6905270220725096 | 16 | 13 |
55 | 965201404102569 | 15 | 13 |
54 | 406631878136604 | 15 | 12 |
53 | 19038433483091 | 14 | 11 |
52 | 14705022050741 | 14 | 11 |
51 | 4244405044424 | 13 | 11 |
50 | 650880088056 | 12 | 10 |
49 | 494280082494 | 12 | 10 |
48 | 493533335394 | 12 | 10 |
47 | 98794149789 | 11 | 9 |
46 | 91792829719 | 11 | 9 |
45 | 77991919977 | 11 | 9 |
44 | 72603630627 | 11 | 9 |
43 | 68921312986 | 11 | 9 |
42 | 58802720885 | 11 | 9 |
41 | 57431913475 | 11 | 9 |
40 | 30873037803 | 11 | 9 |
39 | 2038558302 | 10 | 8 |
38 | 335929533 | 9 | 7 |
37 | 280535082 | 9 | 7 |
36 | 229232922 | 9 | 7 |
35 | 212313212 | 9 | 7 |
34 | 208373802 | 9 | 7 |
33 | 207535702 | 9 | 7 |
32 | 124454421 | 9 | 7 |
31 | 123616321 | 9 | 7 |
30 | 103595301 | 9 | 7 |
29 | 102757201 | 9 | 7 |
28 | 31744713 | 8 | 7 |
27 | 8837388 | 7 | 6 |
26 | 4165614 | 7 | 6 |
25 | 1388831 | 7 | 5 |
24 | 335533 | 6 | 5 |
23 | 256652 | 6 | 5 |
22 | 177771 | 6 | 5 |
21 | 94249 | 5 | 5 |
20 | 61416 | 5 | 4 |
19 | 4554 | 4 | 3 |
18 | 2882 | 4 | 3 |
17 | 989 | 3 | 3 |
16 | 818 | 3 | 3 |
15 | 767 | 3 | 3 |
14 | 545 | 3 | 3 |
13 | 494 | 3 | 3 |
12 | 252 | 3 | 2 |
11 | Prime! 11 | 2 | 1 |
10 | 9 | 1 | 1 |
9 | 8 | 1 | 1 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 18 A248889 | L base 10 | L base 18 |
| Next > 10^20 | | |
83 | 41470196888869107414 | 20 | 16 |
82 | 5827580384830857285 | 19 | 15 |
81 | 5812958640468592185 | 19 | 15 |
80 | 5725600893980065275 | 19 | 15 |
79 | 5052817248427182505 | 19 | 15 |
78 | 4804809688869084084 | 19 | 15 |
77 | 3497509383839057943 | 19 | 15 |
76 | 3489855513155589843 | 19 | 15 |
75 | 3377352952592537733 | 19 | 15 |
74 | 2528468040408648252 | 19 | 15 |
73 | 2525541666661455252 | 19 | 15 |
72 | 2432426921296242342 | 19 | 15 |
71 | 2324074260624704232 | 19 | 15 |
70 | 1884584402044854881 | 19 | 15 |
69 | 1129798206028979211 | 19 | 15 |
68 | 104737165561737401 | 18 | 14 |
67 | 18245601610654281 | 17 | 13 |
66 | 11247779597774211 | 17 | 13 |
65 | 4725393553935274 | 16 | 13 |
64 | 4671431331341764 | 16 | 13 |
63 | 3496774224776943 | 16 | 13 |
62 | 1511668448661151 | 16 | 13 |
61 | 427740777047724 | 15 | 12 |
60 | 385281878182583 | 15 | 12 |
59 | 56203688630265 | 14 | 11 |
58 | 35334455443353 | 14 | 11 |
57 | 5764436344675 | 13 | 11 |
56 | 3968412148693 | 13 | 11 |
55 | 3376963696733 | 13 | 10 |
54 | 2557615167552 | 13 | 10 |
53 | 188833338881 | 12 | 9 |
52 | Prime! 79288288297 | 11 | 9 |
51 | 69675357696 | 11 | 9 |
50 | 59388288395 | 11 | 9 |
49 | 58813031885 | 11 | 9 |
48 | 26965056962 | 11 | 9 |
47 | 14969696941 | 11 | 9 |
46 | 387191783 | 9 | 7 |
45 | Prime! 386454683 | 9 | 7 |
44 | 385717583 | 9 | 7 |
43 | 376222673 | 9 | 7 |
42 | 327696723 | 9 | 7 |
41 | 326959623 | 9 | 7 |
40 | 221050122 | 9 | 7 |
39 | 220313022 | 9 | 7 |
38 | 191010191 | 9 | 7 |
37 | 118919811 | 9 | 7 |
36 | 88844888 | 8 | 7 |
35 | 55499455 | 8 | 7 |
34 | 54411445 | 8 | 7 |
33 | 39388393 | 8 | 7 |
32 | Prime! 1832381 | 7 | 5 |
31 | 1403041 | 7 | 5 |
30 | 1254521 | 7 | 5 |
29 | 981189 | 6 | 5 |
28 | 859958 | 6 | 5 |
27 | 782287 | 6 | 5 |
26 | 583385 | 6 | 5 |
25 | 262262 | 6 | 5 |
24 | 69996 | 5 | 4 |
23 | 46664 | 5 | 4 |
22 | 23332 | 5 | 4 |
21 | 3773 | 4 | 3 |
20 | 2112 | 4 | 3 |
19 | 1661 | 4 | 3 |
18 | 848 | 3 | 3 |
17 | 686 | 3 | 3 |
16 | 595 | 3 | 3 |
15 | 505 | 3 | 3 |
14 | 343 | 3 | 3 |
13 | 323 | 3 | 2 |
12 | 171 | 3 | 2 |
11 | Prime! 11 | 2 | 1 |
10 | 9 | 1 | 1 |
9 | 8 | 1 | 1 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 19 A248899 | L base 10 | L base 19 |
| Next > 10^20 | | |
60 | 11330422577522403311 | 20 | 15 |
59 | 9611176039306711169 | 19 | 15 |
58 | 9333120815180213339 | 19 | 15 |
57 | 8705115152515115078 | 19 | 15 |
56 | 8507775490945777058 | 19 | 15 |
55 | 7401130704070311047 | 19 | 15 |
54 | 7382719398939172837 | 19 | 15 |
53 | 6510099759579900156 | 19 | 15 |
52 | 5846194156514916485 | 19 | 15 |
51 | 4502146351536412054 | 19 | 15 |
50 | 4306351929291536034 | 19 | 15 |
49 | 3695653224223565963 | 19 | 15 |
48 | 41530875757803514 | 17 | 13 |
47 | 33670675157607633 | 17 | 13 |
46 | 30676982028967603 | 17 | 13 |
45 | 21858850305885812 | 17 | 13 |
44 | 18057661216675081 | 17 | 13 |
43 | 10365316861356301 | 17 | 13 |
42 | 8328654774568238 | 16 | 13 |
41 | 2794478998744972 | 16 | 13 |
40 | 2696617447166962 | 16 | 13 |
39 | 6976862686796 | 13 | 11 |
38 | 6959926299596 | 13 | 11 |
37 | 246025520642 | 12 | 9 |
36 | 234595595432 | 12 | 9 |
35 | 139103301931 | 12 | 9 |
34 | 127673376721 | 12 | 9 |
33 | 121791197121 | 12 | 9 |
32 | 96060106069 | 11 | 9 |
31 | 87161116178 | 11 | 9 |
30 | 67269596276 | 11 | 9 |
29 | 62558085526 | 11 | 9 |
28 | 47069796074 | 11 | 9 |
27 | 863828368 | 9 | 7 |
26 | 857383758 | 9 | 7 |
25 | 666909666 | 9 | 7 |
24 | 650767056 | 9 | 7 |
23 | 467535764 | 9 | 7 |
22 | 453848354 | 9 | 7 |
21 | Prime! 330050033 | 9 | 7 |
20 | Prime! 155292551 | 9 | 7 |
19 | 2211122 | 7 | 5 |
18 | 1897981 | 7 | 5 |
17 | Prime! 1551551 | 7 | 5 |
16 | 864468 | 6 | 5 |
15 | 432234 | 6 | 5 |
14 | 1771 | 4 | 3 |
13 | 838 | 3 | 3 |
12 | 666 | 3 | 3 |
11 | Prime! 11 | 2 | 1 |
10 | 9 | 1 | 1 |
9 | 8 | 1 | 1 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 20 A250408 | L base 10 | L base 20 |
| Next > 10^20 | | |
85 | 105878013310878501 | 18 | 14 |
84 | 71874813431847817 | 17 | 13 |
83 | 71831895259813817 | 17 | 13 |
82 | 69517556065571596 | 17 | 13 |
81 | 69515054645051596 | 17 | 13 |
80 | 69515035653051596 | 17 | 13 |
79 | 67316423732461376 | 17 | 13 |
78 | 67316404740461376 | 17 | 13 |
77 | 67314157075141376 | 17 | 13 |
76 | 67182731613728176 | 17 | 13 |
75 | 67180087178008176 | 17 | 13 |
74 | 2533637117363352 | 16 | 12 |
73 | 2533401331043352 | 16 | 12 |
72 | 115629444926511 | 15 | 11 |
71 | 115488939884511 | 15 | 11 |
70 | 115482777284511 | 15 | 11 |
69 | 115482161284511 | 15 | 11 |
68 | 115238181832511 | 15 | 11 |
67 | 112989686989211 | 15 | 11 |
66 | 112983848389211 | 15 | 11 |
65 | 112739252937211 | 15 | 11 |
64 | 112733414337211 | 15 | 11 |
63 | 112733090337211 | 15 | 11 |
62 | 96757333375769 | 14 | 11 |
61 | 96544000044569 | 14 | 11 |
60 | 92862200226829 | 14 | 11 |
59 | 86356300365368 | 14 | 11 |
58 | 82885700758828 | 14 | 11 |
57 | 82868066086828 | 14 | 11 |
56 | 76185311358167 | 14 | 11 |
55 | 76160000006167 | 14 | 11 |
54 | 72697077079627 | 14 | 11 |
53 | 72691155119627 | 14 | 11 |
52 | 72678611687627 | 14 | 11 |
51 | 72279011097227 | 14 | 11 |
50 | 68857077075886 | 14 | 11 |
49 | 68851155115886 | 14 | 11 |
48 | 68838611683886 | 14 | 11 |
47 | 62296044069226 | 14 | 11 |
46 | 62089899898026 | 14 | 11 |
45 | 58667622676685 | 14 | 11 |
44 | 58661700716685 | 14 | 11 |
43 | 58456044065485 | 14 | 11 |
42 | 54985444458945 | 14 | 11 |
41 | 48479922997484 | 14 | 11 |
40 | 48473077037484 | 14 | 11 |
39 | 44778355387744 | 14 | 11 |
38 | 44584411448544 | 14 | 11 |
37 | 38283622638283 | 14 | 11 |
36 | 38072044027083 | 14 | 11 |
35 | 28095922959082 | 14 | 11 |
34 | 14102600620141 | 14 | 11 |
33 | 10614366341601 | 14 | 11 |
32 | 355746647553 | 12 | 9 |
31 | 355110011553 | 12 | 9 |
30 | 334843348433 | 12 | 9 |
29 | 334495594433 | 12 | 9 |
28 | 1444884441 | 10 | 8 |
27 | 1919191 | 7 | 5 |
26 | Prime! 1917191 | 7 | 5 |
25 | 1915191 | 7 | 5 |
24 | 1913191 | 7 | 5 |
23 | 1788871 | 7 | 5 |
22 | 1786871 | 7 | 5 |
21 | 1784871 | 7 | 5 |
20 | 30303 | 5 | 4 |
19 | 22722 | 5 | 4 |
18 | 20202 | 5 | 4 |
17 | 12621 | 5 | 4 |
16 | 10101 | 5 | 4 |
15 | 7117 | 4 | 3 |
14 | 6776 | 4 | 3 |
13 | 6556 | 4 | 3 |
12 | 252 | 3 | 2 |
11 | Prime! 11 | 2 | 1 |
10 | 9 | 1 | 1 |
9 | 8 | 1 | 1 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 21
| L base 10 | L base 21 |
| Next > 10^20 | | |
105 | 54022659711795622045 | 20 | 15 |
104 | 53479116322361197435 | 20 | 15 |
103 | 52695119366391159625 | 20 | 15 |
102 | 32056623722732665023 | 20 | 15 |
101 | 28130792022029703182 | 20 | 15 |
100 | 4889312521252139884 | 19 | 15 |
99 | 2969386212126839692 | 19 | 14 |
98 | 2745161405041615472 | 19 | 14 |
97 | 2407431827281347042 | 19 | 14 |
96 | 2242598563658952422 | 19 | 14 |
95 | 881866612216668188 | 18 | 14 |
94 | 478303605506303874 | 18 | 14 |
93 | 99703025352030799 | 17 | 13 |
92 | 92613604440631629 | 17 | 13 |
91 | 82993441914439928 | 17 | 13 |
90 | Prime! 78357734643775387 | 17 | 13 |
89 | 49126258185262194 | 17 | 13 |
88 | 44506740304760544 | 17 | 13 |
87 | 39823252625232893 | 17 | 13 |
86 | 38275424142457283 | 17 | 13 |
85 | 37022794049722073 | 17 | 13 |
84 | 32924868186842923 | 17 | 13 |
83 | 28590052425009582 | 17 | 13 |
82 | 23530366466303532 | 17 | 13 |
81 | 13894950405949831 | 17 | 13 |
80 | 10091495959419001 | 17 | 13 |
79 | 8628788338878268 | 16 | 13 |
78 | 6388598118958836 | 16 | 12 |
77 | 6116292442926116 | 16 | 12 |
76 | 4690638558360964 | 16 | 12 |
75 | 2369324774239632 | 16 | 12 |
74 | 2277486006847722 | 16 | 12 |
73 | 881910212019188 | 15 | 12 |
72 | 338734909437833 | 15 | 11 |
71 | 289911959119982 | 15 | 11 |
70 | 235023626320532 | 15 | 11 |
69 | 217306686603712 | 15 | 11 |
68 | 207449545944702 | 15 | 11 |
67 | 128197515791821 | 15 | 11 |
66 | 90660677606609 | 14 | 11 |
65 | 59139544593195 | 14 | 11 |
64 | 27210988901272 | 14 | 11 |
63 | 8816817186188 | 13 | 10 |
62 | 2596329236952 | 13 | 10 |
61 | 440827728044 | 12 | 9 |
60 | 303880088303 | 12 | 9 |
59 | 98157575189 | 11 | 9 |
58 | 79375957397 | 11 | 9 |
57 | 66969496966 | 11 | 9 |
56 | 54482928445 | 11 | 9 |
55 | 8087337808 | 10 | 8 |
54 | 6801661086 | 10 | 8 |
53 | 4672002764 | 10 | 8 |
52 | 4475555744 | 10 | 8 |
51 | 2130880312 | 10 | 8 |
50 | 1696776961 | 10 | 7 |
49 | 1418668141 | 10 | 7 |
48 | 1378448731 | 10 | 7 |
47 | 900535009 | 9 | 7 |
46 | 620282026 | 9 | 7 |
45 | 490222094 | 9 | 7 |
44 | 427020724 | 9 | 7 |
43 | 423484324 | 9 | 7 |
42 | 409161904 | 9 | 7 |
41 | 340373043 | 9 | 7 |
40 | 293080392 | 9 | 7 |
39 | 68933986 | 8 | 6 |
38 | 67222276 | 8 | 6 |
37 | 66988966 | 8 | 6 |
36 | 46422464 | 8 | 6 |
35 | 28355382 | 8 | 6 |
34 | 25622652 | 8 | 6 |
33 | 6612166 | 7 | 6 |
32 | 6563656 | 7 | 6 |
31 | 6233326 | 7 | 6 |
30 | 3979793 | 7 | 5 |
29 | 3735373 | 7 | 5 |
28 | 3710173 | 7 | 5 |
27 | 2379732 | 7 | 5 |
26 | 1844481 | 7 | 5 |
25 | 845548 | 6 | 5 |
24 | 672276 | 6 | 5 |
23 | 203302 | 6 | 5 |
22 | 87978 | 5 | 4 |
21 | 61116 | 5 | 4 |
20 | 989 | 3 | 3 |
19 | Prime! 757 | 3 | 3 |
18 | 505 | 3 | 3 |
17 | 484 | 3 | 3 |
16 | 242 | 3 | 2 |
15 | 88 | 2 | 2 |
14 | 66 | 2 | 2 |
13 | 44 | 2 | 2 |
12 | 22 | 2 | 2 |
11 | Prime! 11 | 2 | 1 |
10 | 9 | 1 | 1 |
9 | 8 | 1 | 1 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 22
| L base 10 | L base 22 |
| Next > 10^20 | | |
72 | 74312996511569921347 | 20 | 15 |
71 | 72673811666611837627 | 20 | 15 |
70 | 72413971722717931427 | 20 | 15 |
69 | 72099151411415199027 | 20 | 15 |
68 | 71670186944968107617 | 20 | 15 |
67 | 7260302291922030627 | 19 | 15 |
66 | 150917442244719051 | 18 | 13 |
65 | 142054031130450241 | 18 | 13 |
64 | 95881569296518859 | 17 | 13 |
63 | 93895494749459839 | 17 | 13 |
62 | 90814147874141809 | 17 | 13 |
61 | 89233276667233298 | 17 | 13 |
60 | 89079044444097098 | 17 | 13 |
59 | 83218001210081238 | 17 | 13 |
58 | 75144757675744157 | 17 | 13 |
57 | 71360959395906317 | 17 | 13 |
56 | 19291952825919291 | 17 | 13 |
55 | 17467113931176471 | 17 | 13 |
54 | 574128141821475 | 15 | 11 |
53 | 573859747958375 | 15 | 11 |
52 | 567425595524765 | 15 | 11 |
51 | 495172868271594 | 15 | 11 |
50 | 276695727596672 | 15 | 11 |
49 | 232474888474232 | 15 | 11 |
48 | 145410535014541 | 15 | 11 |
47 | 100357979753001 | 15 | 11 |
46 | 1963232323691 | 13 | 10 |
45 | 1389924299831 | 13 | 10 |
44 | 1162319132611 | 13 | 9 |
43 | 93648984639 | 11 | 9 |
42 | 77263836277 | 11 | 9 |
41 | 77185658177 | 11 | 9 |
40 | Prime! 75293639257 | 11 | 9 |
39 | 18486568481 | 11 | 8 |
38 | 1297007921 | 10 | 7 |
37 | 1285665821 | 10 | 7 |
36 | 575595575 | 9 | 7 |
35 | 575232575 | 9 | 7 |
34 | 472181274 | 9 | 7 |
33 | 399080993 | 9 | 7 |
32 | 133727331 | 9 | 7 |
31 | 59155195 | 8 | 6 |
30 | 5109015 | 7 | 5 |
29 | 5048405 | 7 | 5 |
28 | 2968692 | 7 | 5 |
27 | 2846482 | 7 | 5 |
26 | 2408042 | 7 | 5 |
25 | 2359532 | 7 | 5 |
24 | 79097 | 5 | 4 |
23 | 76567 | 5 | 4 |
22 | 28382 | 5 | 4 |
21 | 25852 | 5 | 4 |
20 | 5775 | 4 | 3 |
19 | 5665 | 4 | 3 |
18 | 5555 | 4 | 3 |
17 | 5445 | 4 | 3 |
16 | 5335 | 4 | 3 |
15 | Prime! 727 | 3 | 3 |
14 | 595 | 3 | 3 |
13 | 414 | 3 | 2 |
12 | 161 | 3 | 2 |
11 | Prime! 11 | 2 | 1 |
10 | 9 | 1 | 1 |
9 | 8 | 1 | 1 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 23
| L base 10 | L base 23 |
| Next > 10^20 | | |
75 | 8210665697965660128 | 19 | 14 |
74 | 4816500789870056184 | 19 | 14 |
73 | 4283464631364643824 | 19 | 14 |
72 | 487917888888719784 | 18 | 13 |
71 | 306274366663472603 | 18 | 13 |
70 | 87947524442574978 | 17 | 13 |
69 | 81157437573475118 | 17 | 13 |
68 | 75427181318172457 | 17 | 13 |
67 | 30110838583801103 | 17 | 13 |
66 | 870451686154078 | 15 | 11 |
65 | 854161737161458 | 15 | 11 |
64 | 771958868859177 | 15 | 11 |
63 | 743564333465347 | 15 | 11 |
62 | 743067525760347 | 15 | 11 |
61 | 595175959571595 | 15 | 11 |
60 | 583400171004385 | 15 | 11 |
59 | 567110222011765 | 15 | 11 |
58 | 439321919123934 | 15 | 11 |
57 | 274078272870472 | 15 | 11 |
56 | 156776767677651 | 15 | 11 |
55 | 144645535546441 | 15 | 11 |
54 | 144148727841441 | 15 | 11 |
53 | 59568111186595 | 14 | 11 |
52 | 8463508053648 | 13 | 10 |
51 | 1759179719571 | 13 | 9 |
50 | 1724384834271 | 13 | 9 |
49 | 1372149412731 | 13 | 9 |
48 | 881274472188 | 12 | 9 |
47 | 830493394038 | 12 | 9 |
46 | 676421124676 | 12 | 9 |
45 | 638980089836 | 12 | 9 |
44 | 625640046526 | 12 | 9 |
43 | 317227722713 | 12 | 9 |
42 | 63522022536 | 11 | 8 |
41 | 61029992016 | 11 | 8 |
40 | 46405150464 | 11 | 8 |
39 | 3181771813 | 10 | 7 |
38 | 2266116622 | 10 | 7 |
37 | 965585569 | 9 | 7 |
36 | 949969949 | 9 | 7 |
35 | 843636348 | 9 | 7 |
34 | 282565282 | 9 | 7 |
33 | 254040452 | 9 | 7 |
32 | 199757991 | 9 | 7 |
31 | 6307036 | 7 | 5 |
30 | 5836385 | 7 | 5 |
29 | 5116115 | 7 | 5 |
28 | 4645464 | 7 | 5 |
27 | 4151514 | 7 | 5 |
26 | 3454543 | 7 | 5 |
25 | 1911191 | 7 | 5 |
24 | 1049401 | 7 | 5 |
23 | 88488 | 5 | 4 |
22 | 84048 | 5 | 4 |
21 | 65256 | 5 | 4 |
20 | 42024 | 5 | 4 |
19 | 6336 | 4 | 3 |
18 | 5115 | 4 | 3 |
17 | 3663 | 4 | 3 |
16 | 2442 | 4 | 3 |
15 | 1221 | 4 | 3 |
14 | 898 | 3 | 3 |
13 | 737 | 3 | 3 |
12 | 22 | 2 | 1 |
11 | Prime! 11 | 2 | 1 |
10 | 9 | 1 | 1 |
9 | 8 | 1 | 1 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 24 A250409 | L base 10 | L base 24 |
| Next > 10^20 | | |
103 | 86812504855840521868 | 20 | 15 |
102 | 47620992166129902674 | 20 | 15 |
101 | 39763873222237836793 | 20 | 15 |
100 | 33847674500547674833 | 20 | 15 |
99 | 5219957301037599125 | 19 | 14 |
98 | 834291782287192438 | 18 | 13 |
97 | 830868275572868038 | 18 | 13 |
96 | 705673961169376507 | 18 | 13 |
95 | 689870646646078986 | 18 | 13 |
94 | 500807240042708005 | 18 | 13 |
93 | 351531099990135153 | 18 | 13 |
92 | 334935786687539433 | 18 | 13 |
91 | 56257511911575265 | 17 | 13 |
90 | Prime! 37872782328727873 | 17 | 13 |
89 | 1081605445061801 | 16 | 11 |
88 | 978898787898879 | 15 | 11 |
87 | 974909929909479 | 15 | 11 |
86 | 972363696363279 | 15 | 11 |
85 | 893872555278398 | 15 | 11 |
84 | 893859050958398 | 15 | 11 |
83 | Prime! 726674454476627 | 15 | 11 |
82 | 720623343326027 | 15 | 11 |
81 | 709277808772907 | 15 | 11 |
80 | 668444222444866 | 15 | 11 |
79 | 649470979074946 | 15 | 11 |
78 | 649457474754946 | 15 | 11 |
77 | 379849999948973 | 15 | 11 |
76 | 352084363480253 | 15 | 11 |
75 | 296430484034692 | 15 | 11 |
74 | 294823767328492 | 15 | 11 |
73 | 279033838330972 | 15 | 11 |
72 | 273593222395372 | 15 | 11 |
71 | 108971474179801 | 15 | 11 |
70 | 106395121593601 | 15 | 11 |
69 | 100344010443001 | 15 | 11 |
68 | 5223359533225 | 13 | 10 |
67 | 2084684864802 | 13 | 9 |
66 | 2084226224802 | 13 | 9 |
65 | 2024272724202 | 13 | 9 |
64 | 1490461640941 | 13 | 9 |
63 | 1318742478131 | 13 | 9 |
62 | 1047699967401 | 13 | 9 |
61 | 1042342432401 | 13 | 9 |
60 | 780089980087 | 12 | 9 |
59 | 686286682686 | 12 | 9 |
58 | 240745547042 | 12 | 9 |
57 | 129797797921 | 12 | 9 |
56 | 125825528521 | 12 | 9 |
55 | 3032112303 | 10 | 7 |
54 | 2315115132 | 10 | 7 |
53 | 1516776151 | 10 | 7 |
52 | 1039669301 | 10 | 7 |
51 | 981050189 | 9 | 7 |
50 | 866333668 | 9 | 7 |
49 | 760313067 | 9 | 7 |
48 | 728434827 | 9 | 7 |
47 | 491979194 | 9 | 7 |
46 | 459020954 | 9 | 7 |
45 | 417767714 | 9 | 7 |
44 | 353000353 | 9 | 7 |
43 | 311747113 | 9 | 7 |
42 | Prime! 7865687 | 7 | 5 |
41 | 7658567 | 7 | 5 |
40 | 7192917 | 7 | 5 |
39 | 7132317 | 7 | 5 |
38 | 6747476 | 7 | 5 |
37 | 6281826 | 7 | 5 |
36 | 6014106 | 7 | 5 |
35 | 5836385 | 7 | 5 |
34 | 5103015 | 7 | 5 |
33 | 4925294 | 7 | 5 |
32 | 4296924 | 7 | 5 |
31 | 4029204 | 7 | 5 |
30 | Prime! 3673763 | 7 | 5 |
29 | 3118113 | 7 | 5 |
28 | 2762672 | 7 | 5 |
27 | 2267622 | 7 | 5 |
26 | 2207022 | 7 | 5 |
25 | Prime! 1851581 | 7 | 5 |
24 | 374473 | 6 | 5 |
23 | 13631 | 5 | 3 |
22 | 12621 | 5 | 3 |
21 | 11011 | 5 | 3 |
20 | 10001 | 5 | 3 |
19 | 8558 | 4 | 3 |
18 | 6996 | 4 | 3 |
17 | 6226 | 4 | 3 |
16 | 4664 | 4 | 3 |
15 | 2332 | 4 | 3 |
14 | 575 | 3 | 2 |
13 | 525 | 3 | 2 |
12 | 22 | 2 | 1 |
11 | Prime! 11 | 2 | 1 |
10 | 9 | 1 | 1 |
9 | 8 | 1 | 1 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 25 A250410 | L base 10 | L base 25 |
| Next > 10^20 | | |
96 | 77606803722730860677 | 20 | 15 |
95 | 62581772266227718526 | 20 | 15 |
94 | Prime! 1272787016107872721 | 19 | 13 |
93 | Prime! 1272398751578932721 | 19 | 13 |
92 | Prime! 1272394497944932721 | 19 | 13 |
91 | 1262866576756682621 | 19 | 13 |
90 | 1262694643464962621 | 19 | 13 |
89 | 1262690389830962621 | 19 | 13 |
88 | Prime! 1262585225225852621 | 19 | 13 |
87 | 1262196960696912621 | 19 | 13 |
86 | Prime! 1262196953596912621 | 19 | 13 |
85 | 1252998152518992521 | 19 | 13 |
84 | 1252990535350992521 | 19 | 13 |
83 | 1252881117111882521 | 19 | 13 |
82 | 689560096690065986 | 18 | 13 |
81 | 109981264462189901 | 18 | 13 |
80 | 62005276067250026 | 17 | 13 |
79 | 8251018778101528 | 16 | 12 |
78 | 1134114554114311 | 16 | 11 |
77 | 858118262811858 | 15 | 11 |
76 | 854207131702458 | 15 | 11 |
75 | 659953777359956 | 15 | 11 |
74 | 606970919079606 | 15 | 11 |
73 | 507756707657705 | 15 | 11 |
72 | 404662313266404 | 15 | 11 |
71 | 404615656516404 | 15 | 11 |
70 | 400704525407004 | 15 | 11 |
69 | 309318434813903 | 15 | 11 |
68 | 259756919657952 | 15 | 11 |
67 | 255881999188552 | 15 | 11 |
66 | 255839929938552 | 15 | 11 |
65 | 251970868079152 | 15 | 11 |
64 | 206784282487602 | 15 | 11 |
63 | 206224040422602 | 15 | 11 |
62 | 202867292768202 | 15 | 11 |
61 | 202307050703202 | 15 | 11 |
60 | 156662525266651 | 15 | 11 |
59 | 89954955945998 | 14 | 10 |
58 | 89331400413398 | 14 | 10 |
57 | 61986277268916 | 14 | 10 |
56 | 28023488432082 | 14 | 10 |
55 | 1678753578761 | 13 | 9 |
54 | Prime! 1678699968761 | 13 | 9 |
53 | 1678690968761 | 13 | 9 |
52 | 83895259838 | 11 | 8 |
51 | 83849694838 | 11 | 8 |
50 | 874868478 | 9 | 7 |
49 | 874383478 | 9 | 7 |
48 | 827777728 | 9 | 7 |
47 | 223454322 | 9 | 6 |
46 | 85400458 | 8 | 6 |
45 | 9498949 | 7 | 5 |
44 | Prime! 9493949 | 7 | 5 |
43 | 9467649 | 7 | 5 |
42 | 9462649 | 7 | 5 |
41 | 9436349 | 7 | 5 |
40 | 9431349 | 7 | 5 |
39 | 9405049 | 7 | 5 |
38 | Prime! 9400049 | 7 | 5 |
37 | 8986898 | 7 | 5 |
36 | 6639366 | 7 | 5 |
35 | 6634366 | 7 | 5 |
34 | 6608066 | 7 | 5 |
33 | 6603066 | 7 | 5 |
32 | 3397933 | 7 | 5 |
31 | Prime! 3392933 | 7 | 5 |
30 | 3366633 | 7 | 5 |
29 | 3361633 | 7 | 5 |
28 | 3335333 | 7 | 5 |
27 | 3330333 | 7 | 5 |
26 | 3309033 | 7 | 5 |
25 | Prime! 3304033 | 7 | 5 |
24 | 2859582 | 7 | 5 |
23 | 2828282 | 7 | 5 |
22 | 626626 | 6 | 5 |
21 | 622226 | 6 | 5 |
20 | 9339 | 4 | 3 |
19 | 8338 | 4 | 3 |
18 | 7887 | 4 | 3 |
17 | 6886 | 4 | 3 |
16 | 1001 | 4 | 3 |
15 | 676 | 3 | 3 |
14 | 626 | 3 | 3 |
13 | 494 | 3 | 2 |
12 | 22 | 2 | 1 |
11 | Prime! 11 | 2 | 1 |
10 | 9 | 1 | 1 |
9 | 8 | 1 | 1 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 26
| L base 10 | L base 26 |
| Next > 10^20 | | |
90 | 93028124222242182039 | 20 | 15 |
89 | 9767283178713827679 | 19 | 14 |
88 | 6996005035305006996 | 19 | 14 |
87 | 2334617912197164332 | 19 | 13 |
86 | 2162340330330432612 | 19 | 13 |
85 | 1897787568657877981 | 19 | 13 |
84 | 1139080380830809311 | 19 | 13 |
83 | 1056500659560056501 | 19 | 13 |
82 | 739608723327806937 | 18 | 13 |
81 | 95118076767081159 | 17 | 12 |
80 | 89973287278237998 | 17 | 12 |
79 | 3603830770383063 | 16 | 11 |
78 | 3603500110053063 | 16 | 11 |
77 | 3555977887795553 | 16 | 11 |
76 | 3555647227465553 | 16 | 11 |
75 | 1364785115874631 | 16 | 11 |
74 | 1009338558339001 | 16 | 11 |
73 | 889700474007988 | 15 | 11 |
72 | 889266565662988 | 15 | 11 |
71 | 873216272612378 | 15 | 11 |
70 | 738793101397837 | 15 | 11 |
69 | 722274868472227 | 15 | 11 |
68 | 612500656005216 | 15 | 11 |
67 | 520743626347025 | 15 | 11 |
66 | 512326979623215 | 15 | 11 |
65 | 420569949965024 | 15 | 11 |
64 | 179877909778971 | 15 | 11 |
63 | 106018868810601 | 15 | 10 |
62 | 103472686274301 | 15 | 10 |
61 | 92424066042429 | 14 | 10 |
60 | 5404902094045 | 13 | 9 |
59 | 5223922293225 | 13 | 9 |
58 | 4726136316274 | 13 | 9 |
57 | 4190117110914 | 13 | 9 |
56 | 3693694963963 | 13 | 9 |
55 | 3662197912663 | 13 | 9 |
54 | Prime! 3610437340163 | 13 | 9 |
53 | 3335051505333 | 13 | 9 |
52 | 3193401043913 | 13 | 9 |
51 | 3146469646413 | 13 | 9 |
50 | 2183758573812 | 13 | 9 |
49 | 2149753579412 | 13 | 9 |
48 | 1181201021811 | 13 | 9 |
47 | 1134269624311 | 13 | 9 |
46 | 185076670581 | 12 | 8 |
45 | 72728282727 | 11 | 8 |
44 | 30966666903 | 11 | 8 |
43 | 6825225286 | 10 | 7 |
42 | 4417777144 | 10 | 7 |
41 | 2069559602 | 10 | 7 |
40 | 933242339 | 9 | 7 |
39 | 643090346 | 9 | 7 |
38 | 626262626 | 9 | 7 |
37 | 321131123 | 9 | 7 |
36 | Prime! 319282913 | 9 | 7 |
35 | 238010832 | 9 | 6 |
34 | 218050812 | 9 | 6 |
33 | 134515431 | 9 | 6 |
32 | 9823289 | 7 | 5 |
31 | 9679769 | 7 | 5 |
30 | 8285828 | 7 | 5 |
29 | 7924297 | 7 | 5 |
28 | 6530356 | 7 | 5 |
27 | 5048405 | 7 | 5 |
26 | 4631364 | 7 | 5 |
25 | 1387831 | 7 | 5 |
24 | 84348 | 5 | 4 |
23 | 49194 | 5 | 4 |
22 | 18981 | 5 | 4 |
21 | Prime! 17471 | 5 | 3 |
20 | 14841 | 5 | 3 |
19 | Prime! 13331 | 5 | 3 |
18 | 10701 | 5 | 3 |
17 | 9009 | 4 | 3 |
16 | 8228 | 4 | 3 |
15 | 7447 | 4 | 3 |
14 | 4114 | 4 | 3 |
13 | 989 | 3 | 3 |
12 | 22 | 2 | 1 |
11 | Prime! 11 | 2 | 1 |
10 | 9 | 1 | 1 |
9 | 8 | 1 | 1 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 27 A250411 | L base 10 | L base 27 |
| Next > 10^20 | | |
84 | 3386694465644966833 | 19 | 13 |
83 | 3032960836380692303 | 19 | 13 |
82 | 2988046368636408892 | 19 | 13 |
81 | 2973882904092883792 | 19 | 13 |
80 | 2885566902096655882 | 19 | 13 |
79 | 2800354468644530082 | 19 | 13 |
78 | 2019923988893299102 | 19 | 13 |
77 | Prime! 1975783979793875791 | 19 | 13 |
76 | 1905991653561995091 | 19 | 13 |
75 | 1800943129213490081 | 19 | 13 |
74 | 1653624894984263561 | 19 | 13 |
73 | 957001143341100759 | 18 | 13 |
72 | 752009074470900257 | 18 | 13 |
71 | 475084743347480574 | 18 | 13 |
70 | 295871648846178592 | 18 | 13 |
69 | 63240319091304236 | 17 | 12 |
68 | 3774273333724773 | 16 | 11 |
67 | 2533880440883352 | 16 | 11 |
66 | 1276149009416721 | 16 | 11 |
65 | 987115383511789 | 15 | 11 |
64 | 963217686712369 | 15 | 11 |
63 | 872951606159278 | 15 | 11 |
62 | 824685424586428 | 15 | 11 |
61 | 570984989489075 | 15 | 11 |
60 | 6041548451406 | 13 | 9 |
59 | 6014294924106 | 13 | 9 |
58 | 5779540459775 | 13 | 9 |
57 | 5193025203915 | 13 | 9 |
56 | 5052248422505 | 13 | 9 |
55 | 4806859586084 | 13 | 9 |
54 | 4725972795274 | 13 | 9 |
53 | 4520609060254 | 13 | 9 |
52 | 4446399936444 | 13 | 9 |
51 | 4280234320824 | 13 | 9 |
50 | 3958336338593 | 13 | 9 |
49 | 3817559557183 | 13 | 9 |
48 | 2969036309692 | 13 | 9 |
47 | 2904768674092 | 13 | 9 |
46 | 2823881883282 | 13 | 9 |
45 | 9058338509 | 10 | 7 |
44 | 8417447148 | 10 | 7 |
43 | 5364224635 | 10 | 7 |
42 | 2487997842 | 10 | 7 |
41 | 2132882312 | 10 | 7 |
40 | 836040638 | 9 | 7 |
39 | 609808906 | 9 | 7 |
38 | 214171412 | 9 | 6 |
37 | 67166176 | 8 | 6 |
36 | 9827289 | 7 | 5 |
35 | 9466649 | 7 | 5 |
34 | 9392939 | 7 | 5 |
33 | 8737378 | 7 | 5 |
32 | 8663668 | 7 | 5 |
31 | 7573757 | 7 | 5 |
30 | 7368637 | 7 | 5 |
29 | 6639366 | 7 | 5 |
28 | 6278726 | 7 | 5 |
27 | 5549455 | 7 | 5 |
26 | 5475745 | 7 | 5 |
25 | 4385834 | 7 | 5 |
24 | 2287822 | 7 | 5 |
23 | 1197911 | 7 | 5 |
22 | 65856 | 5 | 4 |
21 | 17871 | 5 | 3 |
20 | 15951 | 5 | 3 |
19 | 13031 | 5 | 3 |
18 | Prime! 10301 | 5 | 3 |
17 | Prime! 919 | 3 | 3 |
16 | 838 | 3 | 3 |
15 | Prime! 757 | 3 | 3 |
14 | 616 | 3 | 2 |
13 | 252 | 3 | 2 |
12 | 22 | 2 | 1 |
11 | Prime! 11 | 2 | 1 |
10 | 9 | 1 | 1 |
9 | 8 | 1 | 1 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 28
| L base 10 | L base 28 |
| Next > 10^20 | | |
80 | 29518742877824781592 | 20 | 14 |
79 | 19799649566594699791 | 20 | 14 |
78 | 6242866325236682426 | 19 | 13 |
77 | 6215457749477545126 | 19 | 13 |
76 | 4875696356536965784 | 19 | 13 |
75 | 4380016867686100834 | 19 | 13 |
74 | 3961949609069491693 | 19 | 13 |
73 | 3601086475746801063 | 19 | 13 |
72 | 2988309751579038892 | 19 | 13 |
71 | 2918489161619848192 | 19 | 13 |
70 | 1747045084805407471 | 19 | 13 |
69 | 314435021120534413 | 18 | 13 |
68 | 20210235053201202 | 17 | 12 |
67 | 5249970550799425 | 16 | 11 |
66 | 918395696593819 | 15 | 11 |
65 | 850128939821058 | 15 | 11 |
64 | 629596242695926 | 15 | 11 |
63 | 548785939587845 | 15 | 11 |
62 | 525408828804525 | 15 | 11 |
61 | 319102262201913 | 15 | 11 |
60 | 54173144137145 | 14 | 10 |
59 | 9693965693969 | 13 | 9 |
58 | 8338331338338 | 13 | 9 |
57 | 8332192912338 | 13 | 9 |
56 | 6385093905836 | 13 | 9 |
55 | 5788955598875 | 13 | 9 |
54 | 4699722279964 | 13 | 9 |
53 | 4120874780214 | 13 | 9 |
52 | Prime! 3597871787953 | 13 | 9 |
51 | 2636029206362 | 13 | 9 |
50 | 731212212137 | 12 | 9 |
49 | 396183381693 | 12 | 9 |
48 | 276220022672 | 12 | 8 |
47 | 89279097298 | 11 | 8 |
46 | 79124342197 | 11 | 8 |
45 | 13363136331 | 11 | 7 |
44 | 13240004231 | 11 | 7 |
43 | 11242524211 | 11 | 7 |
42 | 10549494501 | 11 | 7 |
41 | 7298118927 | 10 | 7 |
40 | 6175005716 | 10 | 7 |
39 | 5760110675 | 10 | 7 |
38 | 1538668351 | 10 | 7 |
37 | Prime! 947141749 | 9 | 7 |
36 | 904171409 | 9 | 7 |
35 | Prime! 773939377 | 9 | 7 |
34 | Prime! 751585157 | 9 | 7 |
33 | 711757117 | 9 | 7 |
32 | 500595005 | 9 | 7 |
31 | 427777724 | 9 | 6 |
30 | 161040161 | 9 | 6 |
29 | 10499401 | 8 | 5 |
28 | Prime! 9324239 | 7 | 5 |
27 | 8788878 | 7 | 5 |
26 | 7003007 | 7 | 5 |
25 | 6601066 | 7 | 5 |
24 | 6231326 | 7 | 5 |
23 | 5695965 | 7 | 5 |
22 | 2972792 | 7 | 5 |
21 | 20802 | 5 | 3 |
20 | 16961 | 5 | 3 |
19 | 15251 | 5 | 3 |
18 | 10401 | 5 | 3 |
17 | 6336 | 4 | 3 |
16 | 5775 | 4 | 3 |
15 | 696 | 3 | 2 |
14 | 464 | 3 | 2 |
13 | 232 | 3 | 2 |
12 | 22 | 2 | 1 |
11 | Prime! 11 | 2 | 1 |
10 | 9 | 1 | 1 |
9 | 8 | 1 | 1 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 29
| L base 10 | L base 29 |
| Next > 10^20 | | |
74 | 9697997765677997969 | 19 | 13 |
73 | 8524686215126864258 | 19 | 13 |
72 | 8371624840484261738 | 19 | 13 |
71 | 8321104265624011238 | 19 | 13 |
70 | 6552920373730292556 | 19 | 13 |
69 | 6429956023206599246 | 19 | 13 |
68 | 4403998032308993044 | 19 | 13 |
67 | 3624609808089064263 | 19 | 13 |
66 | 3351297118117921533 | 19 | 13 |
65 | 1818308821288038181 | 19 | 13 |
64 | 760804929929408067 | 18 | 13 |
63 | Prime! 11696809290869611 | 17 | 11 |
62 | 7423932992393247 | 16 | 11 |
61 | 5268469009648625 | 16 | 11 |
60 | 2658767997678562 | 16 | 11 |
59 | 12102077020121 | 14 | 9 |
58 | 9852537352589 | 13 | 9 |
57 | 8991895981998 | 13 | 9 |
56 | 8939482849398 | 13 | 9 |
55 | 8775005005778 | 13 | 9 |
54 | 8511759571158 | 13 | 9 |
53 | 8361888881638 | 13 | 9 |
52 | 7696190916967 | 13 | 9 |
51 | Prime! 7066183816607 | 13 | 9 |
50 | 7040427240407 | 13 | 9 |
49 | 6975552555796 | 13 | 9 |
48 | 6127372737216 | 13 | 9 |
47 | 5634774774365 | 13 | 9 |
46 | 5060470740605 | 13 | 9 |
45 | 4870236320784 | 13 | 9 |
44 | 4240229220424 | 13 | 9 |
43 | 4022056502204 | 13 | 9 |
42 | Prime! 3957181817593 | 13 | 9 |
41 | 3301418141033 | 13 | 9 |
40 | Prime! 3000234320003 | 13 | 9 |
39 | 2440776770442 | 13 | 9 |
38 | Prime! 1145071705411 | 13 | 9 |
37 | 15865056851 | 11 | 7 |
36 | 15700600751 | 11 | 7 |
35 | 14914241941 | 11 | 7 |
34 | 14698289641 | 11 | 7 |
33 | 14533833541 | 11 | 7 |
32 | 5983223895 | 10 | 7 |
31 | 5255225525 | 10 | 7 |
30 | 4771771774 | 10 | 7 |
29 | 4043773404 | 10 | 7 |
28 | 693252396 | 9 | 7 |
27 | 9911199 | 7 | 5 |
26 | 9537359 | 7 | 5 |
25 | 8525258 | 7 | 5 |
24 | Prime! 7958597 | 7 | 5 |
23 | 7139317 | 7 | 5 |
22 | 7078707 | 7 | 5 |
21 | 6233326 | 7 | 5 |
20 | 6172716 | 7 | 5 |
19 | 5160615 | 7 | 5 |
18 | 4654564 | 7 | 5 |
17 | 4593954 | 7 | 5 |
16 | 3581853 | 7 | 5 |
15 | 19191 | 5 | 3 |
14 | 1771 | 4 | 3 |
13 | Prime! 929 | 3 | 3 |
12 | 22 | 2 | 1 |
11 | Prime! 11 | 2 | 1 |
10 | 9 | 1 | 1 |
9 | 8 | 1 | 1 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 30
| L base 10 | L base 30 |
| Next > 10^20 | | |
72 | 213121689986121312 | 18 | 12 |
71 | 212937009900739212 | 18 | 12 |
70 | 12602195859120621 | 17 | 11 |
69 | 509566626665905 | 15 | 10 |
68 | 487035171530784 | 15 | 10 |
67 | 239318080813932 | 15 | 10 |
66 | 238892545298832 | 15 | 10 |
65 | 14313300331341 | 14 | 9 |
64 | Prime! 1201117111021 | 13 | 9 |
63 | 1201109011021 | 13 | 9 |
62 | 16004240061 | 11 | 7 |
61 | 15826462851 | 11 | 7 |
60 | 15599599551 | 11 | 7 |
59 | 15583138551 | 11 | 7 |
58 | 15347274351 | 11 | 7 |
57 | 2134994312 | 10 | 7 |
56 | 2127777212 | 10 | 7 |
55 | 1142992411 | 10 | 7 |
54 | 637888736 | 9 | 6 |
53 | 296878692 | 9 | 6 |
52 | 17433471 | 8 | 5 |
51 | 3178713 | 7 | 5 |
50 | 3161613 | 7 | 5 |
49 | 2402042 | 7 | 5 |
48 | 2293922 | 7 | 5 |
47 | 2285822 | 7 | 5 |
46 | 2277722 | 7 | 5 |
45 | 2269622 | 7 | 5 |
44 | 2102012 | 7 | 5 |
43 | 1501051 | 7 | 5 |
42 | 1392931 | 7 | 5 |
41 | 1384831 | 7 | 5 |
40 | Prime! 1201021 | 7 | 5 |
39 | Prime! 1092901 | 7 | 5 |
38 | 1084801 | 7 | 5 |
37 | 735537 | 6 | 4 |
36 | 20602 | 5 | 3 |
35 | 20302 | 5 | 3 |
34 | 20002 | 5 | 3 |
33 | 19791 | 5 | 3 |
32 | 19491 | 5 | 3 |
31 | 19191 | 5 | 3 |
30 | 18981 | 5 | 3 |
29 | Prime! 10601 | 5 | 3 |
28 | Prime! 10301 | 5 | 3 |
27 | 10001 | 5 | 3 |
26 | 7117 | 4 | 3 |
25 | 6006 | 4 | 3 |
24 | 5225 | 4 | 3 |
23 | 4444 | 4 | 3 |
22 | 4114 | 4 | 3 |
21 | 3333 | 4 | 3 |
20 | 3003 | 4 | 3 |
19 | 2552 | 4 | 3 |
18 | 2222 | 4 | 3 |
17 | 1771 | 4 | 3 |
16 | 1441 | 4 | 3 |
15 | 1111 | 4 | 3 |
14 | 868 | 3 | 2 |
13 | 434 | 3 | 2 |
12 | 22 | 2 | 1 |
11 | Prime! 11 | 2 | 1 |
10 | 9 | 1 | 1 |
9 | 8 | 1 | 1 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 31
| L base 10 | L base 31 |
| Next > 10^20 | | |
86 | 20360129533592106302 | 20 | 13 |
85 | 11450847544574805411 | 20 | 13 |
84 | 9517904104014097159 | 19 | 13 |
83 | 9459484661664849549 | 19 | 13 |
82 | 9270992260622990729 | 19 | 13 |
81 | 8432814151514182348 | 19 | 13 |
80 | 8092734322234372908 | 19 | 13 |
79 | 8017702574752077108 | 19 | 13 |
78 | 7879371694961739787 | 19 | 13 |
77 | 6852701184811072586 | 19 | 13 |
76 | 5597872726272787955 | 19 | 13 |
75 | 4077487289827847704 | 19 | 13 |
74 | 3467500900090057643 | 19 | 13 |
73 | 2747530935390357472 | 19 | 13 |
72 | 1828521298921258281 | 19 | 13 |
71 | 1227145498945417221 | 19 | 13 |
70 | 42269242224296224 | 17 | 12 |
69 | 24191783438719142 | 17 | 11 |
68 | 23762558085526732 | 17 | 11 |
67 | 15294534043549251 | 17 | 11 |
66 | 9917528008257199 | 16 | 11 |
65 | 8744740440474478 | 16 | 11 |
64 | Prime! 961030858030169 | 15 | 11 |
63 | 831208202802138 | 15 | 11 |
62 | 673317949713376 | 15 | 10 |
61 | 635180616081536 | 15 | 10 |
60 | 616197474791616 | 15 | 10 |
59 | 19350999905391 | 14 | 9 |
58 | 18508300380581 | 14 | 9 |
57 | Prime! 9115199915119 | 13 | 9 |
56 | 9028337338209 | 13 | 9 |
55 | 8760465640678 | 13 | 9 |
54 | 8605751575068 | 13 | 9 |
53 | 7707170717077 | 13 | 9 |
52 | 7511392931157 | 13 | 9 |
51 | 7225198915227 | 13 | 9 |
50 | 7138336338317 | 13 | 9 |
49 | 3406192916043 | 13 | 9 |
48 | 17039593071 | 11 | 7 |
47 | Prime! 11819991811 | 11 | 7 |
46 | 1551551551 | 10 | 7 |
45 | 961909169 | 9 | 7 |
44 | 844252448 | 9 | 6 |
43 | 65200256 | 8 | 6 |
42 | 63999936 | 8 | 6 |
41 | 23900932 | 8 | 5 |
40 | 13333331 | 8 | 5 |
39 | 9151519 | 7 | 5 |
38 | 9030309 | 7 | 5 |
37 | Prime! 7696967 | 7 | 5 |
36 | 7575757 | 7 | 5 |
35 | 7454547 | 7 | 5 |
34 | 6383836 | 7 | 5 |
33 | 6262626 | 7 | 5 |
32 | 6141416 | 7 | 5 |
31 | 6020206 | 7 | 5 |
30 | 4686864 | 7 | 5 |
29 | 3494943 | 7 | 5 |
28 | 3373733 | 7 | 5 |
27 | Prime! 3252523 | 7 | 5 |
26 | 3131313 | 7 | 5 |
25 | 3010103 | 7 | 5 |
24 | 86368 | 5 | 4 |
23 | 40704 | 5 | 4 |
22 | 29792 | 5 | 4 |
21 | 23832 | 5 | 3 |
20 | 22622 | 5 | 3 |
19 | 21412 | 5 | 3 |
18 | 20202 | 5 | 3 |
17 | Prime! 19891 | 5 | 3 |
16 | 18681 | 5 | 3 |
15 | Prime! 17471 | 5 | 3 |
14 | 7447 | 4 | 3 |
13 | 1551 | 4 | 3 |
12 | 22 | 2 | 1 |
11 | Prime! 11 | 2 | 1 |
10 | 9 | 1 | 1 |
9 | 8 | 1 | 1 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 32 A099165 | L base 10 | L base 32 |
| Next > 10^20 | | |
120 | 81298451466415489218 | 20 | 14 |
119 | 52413912066021931425 | 20 | 14 |
118 | 50385737133173758305 | 20 | 14 |
117 | 50193942722724939105 | 20 | 14 |
116 | 23398054977945089332 | 20 | 13 |
115 | 5888361733371638885 | 19 | 13 |
114 | 4650111258521110564 | 19 | 13 |
113 | 2808927324237298082 | 19 | 13 |
112 | 2449080129210809442 | 19 | 13 |
111 | 776016912219610677 | 18 | 12 |
110 | 571259217712952175 | 18 | 12 |
109 | 465707571175707564 | 18 | 12 |
108 | 330774945549477033 | 18 | 12 |
107 | 112474443344474211 | 18 | 12 |
106 | 85491930303919458 | 17 | 12 |
105 | 33303935753930333 | 17 | 11 |
104 | 27630511811503672 | 17 | 11 |
103 | 27429643234692472 | 17 | 11 |
102 | 27402111411120472 | 17 | 11 |
101 | Prime! 17624701910742671 | 17 | 11 |
100 | 17096171817169071 | 17 | 11 |
99 | 14777935853977741 | 17 | 11 |
98 | 13177885058877131 | 17 | 11 |
97 | Prime! 13150353235305131 | 17 | 11 |
96 | Prime! 10894711311749801 | 17 | 11 |
95 | 10603962026930601 | 17 | 11 |
94 | 10478015751087401 | 17 | 11 |
93 | 10263806360836201 | 17 | 11 |
92 | 3422669229662243 | 16 | 11 |
91 | 2869960660699682 | 16 | 11 |
90 | 2297158228517922 | 16 | 11 |
89 | 1278746666478721 | 16 | 11 |
88 | 1032078008702301 | 16 | 10 |
87 | 24916011061942 | 14 | 9 |
86 | 17438700783471 | 14 | 9 |
85 | 10641522514601 | 14 | 9 |
84 | 8867028207688 | 13 | 9 |
83 | 8842552552488 | 13 | 9 |
82 | 8825076705288 | 13 | 9 |
81 | 6886033306886 | 13 | 9 |
80 | 5842794972485 | 13 | 9 |
79 | 5806855586085 | 13 | 9 |
78 | 4462757572644 | 13 | 9 |
77 | 1462999992641 | 13 | 9 |
76 | 1232143412321 | 13 | 9 |
75 | 935448844539 | 12 | 8 |
74 | 846261162648 | 12 | 8 |
73 | 691647746196 | 12 | 8 |
72 | 494889988494 | 12 | 8 |
71 | 444036630444 | 12 | 8 |
70 | 421833338124 | 12 | 8 |
69 | 34318181343 | 11 | 7 |
68 | 18884748881 | 11 | 7 |
67 | 14311211341 | 11 | 7 |
66 | 10269296201 | 11 | 7 |
65 | 10261916201 | 11 | 7 |
64 | 8804774088 | 10 | 7 |
63 | 6806006086 | 10 | 7 |
62 | 3403003043 | 10 | 7 |
61 | 2880990882 | 10 | 7 |
60 | 1219669121 | 10 | 7 |
59 | 983767389 | 9 | 6 |
58 | 933909339 | 9 | 6 |
57 | 388919883 | 9 | 6 |
56 | 37477473 | 8 | 6 |
55 | 29800892 | 8 | 5 |
54 | 25777752 | 8 | 5 |
53 | 21499412 | 8 | 5 |
52 | 21033012 | 8 | 5 |
51 | 18255281 | 8 | 5 |
50 | 9867689 | 7 | 5 |
49 | 9802089 | 7 | 5 |
48 | 9658569 | 7 | 5 |
47 | 8407048 | 7 | 5 |
46 | 6882886 | 7 | 5 |
45 | 6673766 | 7 | 5 |
44 | 5487845 | 7 | 5 |
43 | 5422245 | 7 | 5 |
42 | 4236324 | 7 | 5 |
41 | 3825283 | 7 | 5 |
40 | 2639362 | 7 | 5 |
39 | 1251521 | 7 | 5 |
38 | 912219 | 6 | 4 |
37 | 804408 | 6 | 4 |
36 | 780087 | 6 | 4 |
35 | 717717 | 6 | 4 |
34 | 672276 | 6 | 4 |
33 | 609906 | 6 | 4 |
32 | 585585 | 6 | 4 |
31 | 564465 | 6 | 4 |
30 | 477774 | 6 | 4 |
29 | 369963 | 6 | 4 |
28 | 54945 | 5 | 4 |
27 | 32223 | 5 | 3 |
26 | 29692 | 5 | 3 |
25 | 21012 | 5 | 3 |
24 | Prime! 19891 | 5 | 3 |
23 | 15951 | 5 | 3 |
22 | 9449 | 4 | 3 |
21 | 6886 | 4 | 3 |
20 | 5445 | 4 | 3 |
19 | 2882 | 4 | 3 |
18 | 1441 | 4 | 3 |
17 | 858 | 3 | 2 |
16 | 363 | 3 | 2 |
15 | 99 | 2 | 2 |
14 | 66 | 2 | 2 |
13 | 33 | 2 | 2 |
12 | 22 | 2 | 1 |
11 | Prime! 11 | 2 | 1 |
10 | 9 | 1 | 1 |
9 | 8 | 1 | 1 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 33
| L base 10 | L base 33 |
| Next > 10^20 | | |
67 | 38230911200211903283 | 20 | 13 |
66 | 37538898355389883573 | 20 | 13 |
65 | 19409402444420490491 | 20 | 13 |
64 | 18783954433445938781 | 20 | 13 |
63 | 9458721256521278549 | 19 | 13 |
62 | 6602041596951402066 | 19 | 13 |
61 | 4792519341439152974 | 19 | 13 |
60 | 3767693732373967673 | 19 | 13 |
59 | 3419314993994139143 | 19 | 13 |
58 | 3072610981890162703 | 19 | 13 |
57 | 49824185758142894 | 17 | 11 |
56 | 49398817071889394 | 17 | 11 |
55 | 43902061516020934 | 17 | 11 |
54 | 39190925052909193 | 17 | 11 |
53 | 26293112421139262 | 17 | 11 |
52 | 24361112521116342 | 17 | 11 |
51 | 22435712721753422 | 17 | 11 |
50 | 19255758085755291 | 17 | 11 |
49 | 681321878123186 | 15 | 10 |
48 | 7087281827807 | 13 | 9 |
47 | 5239168619325 | 13 | 9 |
46 | 3298767678923 | 13 | 9 |
45 | 3125102015213 | 13 | 9 |
44 | 2957779777592 | 13 | 9 |
43 | 2908060608092 | 13 | 9 |
42 | 2736923296372 | 13 | 9 |
41 | 40909290904 | 11 | 7 |
40 | 30817071803 | 11 | 7 |
39 | 28681818682 | 11 | 7 |
38 | 12483938421 | 11 | 7 |
37 | 610787016 | 9 | 6 |
36 | 26811862 | 8 | 5 |
35 | 26211262 | 8 | 5 |
34 | 14111141 | 8 | 5 |
33 | 9012109 | 7 | 5 |
32 | 7192917 | 7 | 5 |
31 | 6545456 | 7 | 5 |
30 | 5153515 | 7 | 5 |
29 | 4506054 | 7 | 5 |
28 | 3114113 | 7 | 5 |
27 | 2369632 | 7 | 5 |
26 | Prime! 1820281 | 7 | 5 |
25 | 1294921 | 7 | 5 |
24 | 421124 | 6 | 4 |
23 | 415514 | 6 | 4 |
22 | 409904 | 6 | 4 |
21 | 31213 | 5 | 3 |
20 | 29892 | 5 | 3 |
19 | 24442 | 5 | 3 |
18 | 19091 | 5 | 3 |
17 | 17671 | 5 | 3 |
16 | 12221 | 5 | 3 |
15 | 10701 | 5 | 3 |
14 | 646 | 3 | 2 |
13 | 272 | 3 | 2 |
12 | 22 | 2 | 1 |
11 | Prime! 11 | 2 | 1 |
10 | 9 | 1 | 1 |
9 | 8 | 1 | 1 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 34
| L base 10 | L base 34 |
| Next > 10^20 | | |
73 | 74850890322309805847 | 20 | 13 |
72 | 49116020022002061194 | 20 | 13 |
71 | 40329654488445692304 | 20 | 13 |
70 | 36120528966982502163 | 20 | 13 |
69 | 13738892611629883731 | 20 | 13 |
68 | 13464966499466946431 | 20 | 13 |
67 | 4980354200024530894 | 19 | 13 |
66 | 3068265789875628603 | 19 | 13 |
65 | 66618580008581666 | 17 | 11 |
64 | 66387132523178366 | 17 | 11 |
63 | 63344575857544336 | 17 | 11 |
62 | 62703992029930726 | 17 | 11 |
61 | 57360531413506375 | 17 | 11 |
60 | 51914591419541915 | 17 | 11 |
59 | 46571130803117564 | 17 | 11 |
58 | 42805321512350824 | 17 | 11 |
57 | 41596743034769514 | 17 | 11 |
56 | 29974237873247992 | 17 | 11 |
55 | 26712276167221762 | 17 | 11 |
54 | 11727327672372711 | 17 | 11 |
53 | Prime! 11376545454567311 | 17 | 11 |
52 | 7894167667614987 | 16 | 11 |
51 | 6173061111603716 | 16 | 11 |
50 | 3630457117540363 | 16 | 11 |
49 | 3033080770803303 | 16 | 11 |
48 | 43649088094634 | 14 | 9 |
47 | 9950190910599 | 13 | 9 |
46 | 9326196916239 | 13 | 9 |
45 | 5641401041465 | 13 | 9 |
44 | 4048267628404 | 13 | 9 |
43 | 43590509534 | 11 | 7 |
42 | 35793239753 | 11 | 7 |
41 | 30632523603 | 11 | 7 |
40 | 30268686203 | 11 | 7 |
39 | 28185658182 | 11 | 7 |
38 | 22835253822 | 11 | 7 |
37 | 18319091381 | 11 | 7 |
36 | 6447777446 | 10 | 7 |
35 | 5086996805 | 10 | 7 |
34 | 4601881064 | 10 | 7 |
33 | 525868525 | 9 | 6 |
32 | 31500513 | 8 | 5 |
31 | 29622692 | 8 | 5 |
30 | 8632368 | 7 | 5 |
29 | 8066608 | 7 | 5 |
28 | 7446447 | 7 | 5 |
27 | 5020205 | 7 | 5 |
26 | 2967692 | 7 | 5 |
25 | 38283 | 5 | 3 |
24 | 32123 | 5 | 3 |
23 | 31613 | 5 | 3 |
22 | 28482 | 5 | 3 |
21 | 27972 | 5 | 3 |
20 | 21812 | 5 | 3 |
19 | Prime! 16061 | 5 | 3 |
18 | Prime! 15551 | 5 | 3 |
17 | 9119 | 4 | 3 |
16 | 2552 | 4 | 3 |
15 | 595 | 3 | 2 |
14 | 525 | 3 | 2 |
13 | 33 | 2 | 1 |
12 | 22 | 2 | 1 |
11 | Prime! 11 | 2 | 1 |
10 | 9 | 1 | 1 |
9 | 8 | 1 | 1 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 35
| L base 10 | L base 35 |
| Next > 10^20 | | |
86 | 80804050955905040808 | 20 | 13 |
85 | 76992678711787629967 | 20 | 13 |
84 | 76505756233265750567 | 20 | 13 |
83 | 48005895800859850084 | 20 | 13 |
82 | 26359176200267195362 | 20 | 13 |
81 | 7794403740473044977 | 19 | 13 |
80 | 7775913126213195777 | 19 | 13 |
79 | 7736456939396546377 | 19 | 13 |
78 | 7675459513159545767 | 19 | 13 |
77 | 7458819033309188547 | 19 | 13 |
76 | 7377239767679327737 | 19 | 13 |
75 | 7360219995999120637 | 19 | 13 |
74 | 7062044826284402607 | 19 | 13 |
73 | 6386383582853836836 | 19 | 13 |
72 | 6187432844482347816 | 19 | 13 |
71 | 2192548599958452912 | 19 | 12 |
70 | 840796119911697048 | 18 | 12 |
69 | 801949761167949108 | 18 | 12 |
68 | 94935358285353949 | 17 | 11 |
67 | 94912815351821949 | 17 | 11 |
66 | 94506362726360549 | 17 | 11 |
65 | 94154052825045149 | 17 | 11 |
64 | Prime! 75930888788803957 | 17 | 11 |
63 | 75138056765083157 | 17 | 11 |
62 | 75113827972831157 | 17 | 11 |
61 | 56584814841848565 | 17 | 11 |
60 | 56528122722182565 | 17 | 11 |
59 | 56120175257102165 | 17 | 11 |
58 | 40916991319961904 | 17 | 11 |
57 | 40543993339934504 | 17 | 11 |
56 | Prime! 37964160106146973 | 17 | 11 |
55 | Prime! 37589506860598573 | 17 | 11 |
54 | 21548685358684512 | 17 | 11 |
53 | 21175687378657112 | 17 | 11 |
52 | 18571625352617581 | 17 | 11 |
51 | 17731713731713771 | 17 | 11 |
50 | 17302023632020371 | 17 | 11 |
49 | 232131696131232 | 15 | 10 |
48 | 217030505030712 | 15 | 10 |
47 | 30869533596803 | 14 | 9 |
46 | 28165944956182 | 14 | 9 |
45 | Prime! 9710780870179 | 13 | 9 |
44 | 9638309038369 | 13 | 9 |
43 | 8703990993078 | 13 | 9 |
42 | 2121358531212 | 13 | 8 |
41 | 2102654562012 | 13 | 8 |
40 | 69497279496 | 11 | 8 |
39 | 56028182065 | 11 | 7 |
38 | 55972827955 | 11 | 7 |
37 | 55964546955 | 11 | 7 |
36 | 34145054143 | 11 | 7 |
35 | Prime! 33842924833 | 11 | 7 |
34 | 33834643833 | 11 | 7 |
33 | 23780308732 | 11 | 7 |
32 | 23772027732 | 11 | 7 |
31 | 12599199521 | 11 | 7 |
30 | 9166226619 | 10 | 7 |
29 | 26922962 | 8 | 5 |
28 | Prime! 1881881 | 7 | 5 |
27 | 65556 | 5 | 4 |
26 | 63036 | 5 | 4 |
25 | 42524 | 5 | 3 |
24 | 34643 | 5 | 3 |
23 | 27672 | 5 | 3 |
22 | 21612 | 5 | 3 |
21 | 19791 | 5 | 3 |
20 | 14641 | 5 | 3 |
19 | 13731 | 5 | 3 |
18 | 3993 | 4 | 3 |
17 | 2662 | 4 | 3 |
16 | 1331 | 4 | 3 |
15 | 828 | 3 | 2 |
14 | 252 | 3 | 2 |
13 | 33 | 2 | 1 |
12 | 22 | 2 | 1 |
11 | Prime! 11 | 2 | 1 |
10 | 9 | 1 | 1 |
9 | 8 | 1 | 1 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Index Nr | Also palindromic in base 36 A250412 | L base 10 | L base 36 |
| Next > 10^20 | | |
98 | 89811756188165711898 | 20 | 13 |
97 | 89128718100181782198 | 20 | 13 |
96 | 68332722733722723386 | 20 | 13 |
95 | 40685060744706058604 | 20 | 13 |
94 | 21783718822881738712 | 20 | 13 |
93 | 5056422359532246505 | 19 | 13 |
92 | 2476507590957056742 | 19 | 12 |
91 | 854404185581404458 | 18 | 12 |
90 | 839256186681652938 | 18 | 12 |
89 | 116979806608979611 | 18 | 11 |
88 | 77305171417150377 | 17 | 11 |
87 | 70701803330810707 | 17 | 11 |
86 | 70649867676894607 | 17 | 11 |
85 | 70546180208164507 | 17 | 11 |
84 | 66934618481643966 | 17 | 11 |
83 | 57673510101537675 | 17 | 11 |
82 | 50813624942631805 | 17 | 11 |
81 | 46524937473942564 | 17 | 11 |
80 | 46421250005212464 | 17 | 11 |
79 | 13906815051860931 | 17 | 11 |
78 | 5804986116894085 | 16 | 11 |
77 | 389004000400983 | 15 | 10 |
76 | 361400848004163 | 15 | 10 |
75 | 343201454102343 | 15 | 10 |
74 | 85582866828558 | 14 | 9 |
73 | 67743488434776 | 14 | 9 |
72 | 32866755766823 | 14 | 9 |
71 | 28420977902482 | 14 | 9 |
70 | 25120399302152 | 14 | 9 |
69 | 3955010105593 | 13 | 9 |
68 | 2402398932042 | 13 | 8 |
67 | 1679755579761 | 13 | 8 |
66 | 73533033537 | 11 | 7 |
65 | 71904040917 | 11 | 7 |
64 | 66516061566 | 11 | 7 |
63 | 66394149366 | 11 | 7 |
62 | 61664946616 | 11 | 7 |
61 | 59552225595 | 11 | 7 |
60 | 56276967265 | 11 | 7 |
59 | 56102620165 | 11 | 7 |
58 | 54647974645 | 11 | 7 |
57 | 49931613994 | 11 | 7 |
56 | 44596069544 | 11 | 7 |
55 | 37579097573 | 11 | 7 |
54 | 37280408273 | 11 | 7 |
53 | 27958485972 | 11 | 7 |
52 | 22446164422 | 11 | 7 |
51 | 952343259 | 9 | 6 |
50 | 48655684 | 8 | 5 |
49 | 10066001 | 8 | 5 |
48 | 9488849 | 7 | 5 |
47 | 9242429 | 7 | 5 |
46 | 6950596 | 7 | 5 |
45 | 6918196 | 7 | 5 |
44 | 5927295 | 7 | 5 |
43 | 5182815 | 7 | 5 |
42 | 4306034 | 7 | 5 |
41 | Prime! 3315133 | 7 | 5 |
40 | 1867681 | 7 | 5 |
39 | 1301031 | 7 | 4 |
38 | 987789 | 6 | 4 |
37 | 741147 | 6 | 4 |
36 | 159951 | 6 | 4 |
35 | 42224 | 5 | 3 |
34 | 37973 | 5 | 3 |
33 | 36063 | 5 | 3 |
32 | 33433 | 5 | 3 |
31 | Prime! 30803 | 5 | 3 |
30 | 21112 | 5 | 3 |
29 | 19491 | 5 | 3 |
28 | 16861 | 5 | 3 |
27 | 12321 | 5 | 3 |
26 | 5115 | 4 | 3 |
25 | 2882 | 4 | 3 |
24 | 1441 | 4 | 3 |
23 | 1221 | 4 | 2 |
22 | 999 | 3 | 2 |
21 | 888 | 3 | 2 |
20 | 777 | 3 | 2 |
19 | 666 | 3 | 2 |
18 | 555 | 3 | 2 |
17 | 444 | 3 | 2 |
16 | 333 | 3 | 2 |
15 | 222 | 3 | 2 |
14 | 111 | 3 | 2 |
13 | 33 | 2 | 1 |
12 | 22 | 2 | 1 |
11 | Prime! 11 | 2 | 1 |
10 | 9 | 1 | 1 |
9 | 8 | 1 | 1 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
MISSING TABLES PLANNED FOR CONSTRUCTION IN THE FUTURE
|
Index Nr | Also palindromic in base 60 A262069 | L base 10 | L base 60 |
| Next >10^20 | | |
88 | 19260605633650606291 | 20 | 11 |
87 | 19109139233293190191 | 20 | 11 |
86 | 19108306011060380191 | 20 | 11 |
85 | 12953949300394935921 | 20 | 11 |
84 | 1059511493941159501 | 19 | 11 |
83 | 1008860210120688001 | 19 | 11 |
82 | 111705028820507111 | 18 | 10 |
81 | 96791647174619769 | 17 | 10 |
80 | 94855661216655849 | 17 | 10 |
79 | 94812756665721849 | 17 | 10 |
78 | 90820011311002809 | 17 | 10 |
77 | 86756027772065768 | 17 | 10 |
76 | 84686895859868648 | 17 | 10 |
75 | 78698827572889687 | 17 | 10 |
74 | 70632865556823607 | 17 | 10 |
73 | 62576136663167526 | 17 | 10 |
72 | 44454350005345444 | 17 | 10 |
71 | 40448567076584404 | 17 | 10 |
70 | 26334850305843362 | 17 | 10 |
69 | 18278121412187281 | 17 | 10 |
68 | 18235216861253281 | 17 | 10 |
67 | 6140607337060416 | 16 | 9 |
66 | 5979490660949795 | 16 | 9 |
65 | 4056041771406504 | 16 | 9 |
64 | 4041670880761404 | 16 | 9 |
63 | 2114962552694112 | 16 | 9 |
62 | 2114927447294112 | 16 | 9 |
61 | 1997507557057991 | 16 | 9 |
60 | 1982186226812891 | 16 | 9 |
59 | 1927217227127291 | 16 | 9 |
58 | 1912846336482191 | 16 | 9 |
57 | 1021449441201 | 13 | 7 |
56 | 872376673278 | 12 | 7 |
55 | 872322223278 | 12 | 7 |
54 | 2230660322 | 10 | 6 |
53 | 1486446841 | 10 | 6 |
52 | 608363806 | 9 | 5 |
51 | 607272706 | 9 | 5 |
50 | 606181606 | 9 | 5 |
49 | 605090506 | 9 | 5 |
48 | 603070306 | 9 | 5 |
47 | 589616985 | 9 | 5 |
46 | 588525885 | 9 | 5 |
45 | 587434785 | 9 | 5 |
44 | 586343685 | 9 | 5 |
43 | 585252585 | 9 | 5 |
42 | 584161485 | 9 | 5 |
41 | 451929154 | 9 | 5 |
40 | 450838054 | 9 | 5 |
39 | Prime! 301969103 | 9 | 5 |
38 | 155505551 | 9 | 5 |
37 | 155343551 | 9 | 5 |
36 | 154414451 | 9 | 5 |
35 | Prime! 154252451 | 9 | 5 |
34 | Prime! 153323351 | 9 | 5 |
33 | 153161351 | 9 | 5 |
32 | 152232251 | 9 | 5 |
31 | 152070251 | 9 | 5 |
30 | 151141151 | 9 | 5 |
29 | 150050051 | 9 | 5 |
28 | 28933982 | 8 | 5 |
27 | 26233262 | 8 | 5 |
26 | 14033041 | 8 | 5 |
25 | 11166111 | 8 | 4 |
24 | 8372738 | 7 | 4 |
23 | 2796972 | 7 | 4 |
22 | 148841 | 6 | 3 |
21 | 113311 | 6 | 3 |
20 | 57375 | 5 | 3 |
19 | 57075 | 5 | 3 |
18 | 55755 | 5 | 3 |
17 | 55455 | 5 | 3 |
16 | 55155 | 5 | 3 |
15 | 55 | 2 | 1 |
14 | 44 | 2 | 1 |
13 | 33 | 2 | 1 |
12 | 22 | 2 | 1 |
11 | Prime! 11 | 2 | 1 |
10 | 9 | 1 | 1 |
9 | 8 | 1 | 1 |
8 | Prime! 7 | 1 | 1 |
7 | 6 | 1 | 1 |
6 | Prime! 5 | 1 | 1 |
5 | 4 | 1 | 1 |
4 | Prime! 3 | 1 | 1 |
3 | Prime! 2 | 1 | 1 |
2 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
|
Palindromes in bases 2 and 10.
The main source for this table comes from the following weblink.
Binary/Decimal Palindromes by Charlton Harrison (email) from Austin, Texas.
See also Sloane's sequences A007632 and A046472.
" I just finished writing a distributed client/server program for finding these numbers, and I currently
have it running on 4 different machines at the same time and I'm finding them A LOT faster. That's how
I was able to come up with those new ones. I'd say there are more to come in the near future, too."
[ December 1, 2001 ] Charlton Harrison once found this record binarydecimal palindrome 110 0010111100 0010101010 1101000011 1010000010 0000101110 0001011010 1010100001 1110100011 7475703079870789703075747 The binary string contains 83 digits ! |
[ April 11, 2003 ]
Dw (email) wrote me the following :
"Using a backtracking solver, I have found larger numbers.
The first of these, which is the next after the one mentioned above, is
50824513851188115831542805 (86 bit, 3*5*11*11*17*17*83*11974799*97488286319).
There are no other 86 bit double palindromes.
I also have found two 89 bit double palindromes, but I am not sure if they
are the next ones. There may be some lower ones in 89 bit (haven't searched
that space completely yet) or in 87 bit that I haven't found.
These numbers are
532079161251434152161970235 (5*29*85839676103*42748430836381)
and
552963956270141072659369255 (5*7*7*71*441607*71984077228507867)
As can be seen by their factor representation, they are all composite."
50824513851188115831542805 {26}
10101000001010100000100110101010101001100000000110010101010101100100000101010000010101 {86}
532079161251434152161970235 {27}
11011100000100000001001010010000011001110101010101110011000001001010010000000100000111011 {89}
552963956270141072659369255 {27}
11100100101100110101011000010001001111100100100100111110010001000011010101100110100100111 {89}
[
April 13, 2003 ]
Dw (
email) found four new ones including the 6
th double palindromic prime :
"They are, in opposite sorted order:
138758321383797383123857831 (87 bit, composite, the only 87 bit double palindrome)
390714505091666190505417093 (89 bit, prime)
351095331428353824133590153 (89 bit, composite)
795280629691202196926082597 (90 bit, composite, not sure if this is the next one)."
When asking
Dw for an explanation or description in a few words
what he meant by '
Using a backtracking solver' he replied :
"A backtracking solver is one that solves a problem made up of smaller
problems by trying every one except if it knows its earlier guesses make all
later ones depending on them impossible.
For instance, if you're in a maze and know that all corridors with green
walls eventually lead to a dead end, you can turn around as soon as you find
such a wall (backtrack) if you're trying to find the exit.
The smaller problem is avoiding a dead end, and the larger one is
finding the exit.
If you want the details:
My general strategy goes that to find a double palindromic number, the
solution to its palindromic decimal representation minus its binary
representation must be zero (since they are equal).
Furthermore, you can write a decimal palindrome like 101 * a + 10 * b, where
a and b are digits. The same can be done for binary, and you end up with a
giant (linear diophantine) equation of positive decimal and negative binary factors.
The factors can then be solved, one at a time, using the extended euclidean
algorithm. These are the smaller problems.
I also have a table of maximum and minimum values for each step. That way, if
it's impossible for the binary factors left to subtract enough from the
decimal factors to get zero (or the other way around), the solver backtracks."
[ April 13, 2003 ] Dw once found this record binarydecimal palindrome 1010010001 1101011100 1110010101 0010100001 0100000010 1000010100 1010100111 0011101011 1000100101 795280629691202196926082597 The binary string contains 90 digits ! The decimal string contains 27 digits ! |
138758321383797383123857831 {27}
111001011000111001101111010110010111011100111001110111010011010111101100111000110100111 {87}
351095331428353824133590153 {27}
10010001001101011010101000000110111100000100000100000111101100000010101011010110010001001 {89}
390714505091666190505417093 {27}
10100001100110001000000111100001100011000111011100011000110000111100000010001100110000101 {89}
795280629691202196926082597 {27}
101001000111010111001110010101001010000101000000101000010100101010011100111010111000100101 {90}
[
May 21, 2003 ]
Dw (
email) found a new Binary/Decimal Palindrome :
"I have been trying to find a polynomial time (growth of time needed is a
polynomial of number of bits) algorithm for finding double palindromes of
base 2 and 10. I haven't succeeded yet (my backtracking solver being
exponential), but I have found some interesting things.
For one, to find double palindromes in base 2 and 8 is very simple. Each base 8
digit maps to three bits. Therefore, every double palindrome must consist
of digits who themselves are double palindromes.
For instance, 757 as well as 575 is double palindromic. (These values are 495
and 381 in decimal respectively).
5 maps to 101 in binary, and 7 to 111 in binary.
I have found 1609061098335005338901609061 (91 bits composite),
and this is the only 91 bit one. No 92 bit double palindrome exists, and
93 bits seems to require several days of searching; therefore I'm trying to
find a polynomial time algorithm as mentioned above.
Another approach could be to create a networked version (to do the search on
multiple computers), but I haven't done that yet."
[ May 21, 2003 ] Dw once found this record binarydecimal palindrome 1 0100110010 1111101111 1100001110 1100100000 0010001000 0000100110 1110000111 1110111110 1001100101 1609061098335005338901609061 The binary palindrome contains 91 digits ! The decimal string contains 28 digits ! |
1609061098335005338901609061 {28}
1010011001011111011111100001110110010000000100010000000100110111000011111101111101001100101 {91}
[ June 12, 2003 ]
Dw (email) found new Binary/Decimal Palindromes :
"I rewrote my program to use another strategy at finding the numbers, and this
let me search somewhat faster. As a result, I have found binary/decimal
palindromes up to 102 bits -- broke the 100 bit barrier so to speak.
These are:
None at 92 or 93 bits.
17869806142184248124160896871 (94 bits)
19756291244127372144219265791 (94 bits)
30000258151173237115185200003 (95 bits)
30658464822225352222846485603 (95 bits)
56532345659072227095654323565 (96 bits)
None at 97 or 98 bits.
378059787464677776464787950873 (99 bits)
1115792035060833380605302975111 (100 bits)
None at 101 bits.
3390741646331381831336461470933 (102 bits)
There may be higher ones at 102 bits; I haven't completed the search there."
17869806142184248124160896871 {29}
1110011011110110001110101001000001000000000011001100000000001000001001010111000110111101100111 {94}
19756291244127372144219265791 {29}
1111111101011000000101011001100101101101100001111000011011011010011001101010000001101011111111 {94}
30000258151173237115185200003 {29}
11000001110111110100001110001010010000110100011011000101100001001010001110000101111101110000011 {95}
30658464822225352222846485603 {29}
11000110001000000010110011101000100010000101111111110100001000100010111001101000000010001100011 {95}
56532345659072227095654323565 {29}
101101101010101001110101110101101111011010100000000001010110111101101011101011100101010101101101 {96}
378059787464677776464787950873 {30}
100110001011001001110111010000000001110111000111010111000111011100000000010111011100100110100011001 {99}
1115792035060833380605302975111 {31}
1110000101010101000110001001111111101011111110110110110111111101011111111001000110001010101010000111 {100}
3390741646331381831336461470933 {31}
101010110011000001001111000000100001000111101001011110100101111000100001000000111100100000110011010101 {102}
[ June 17, 2003 ]
Dw (email) adds :
" There are no numbers for 103 bits."
[ Note : In fact there is one! See index number 97.
PDG ]
[ June 17, 2003 ] Dw once found this record binarydecimal palindrome 10 1010110011 0000010011 1100000010 0001000111 1010010111 1010010111 1000100001 0000001111 0010000011 0011010101
3390741646331381831336461470933 The binary palindrome contains 102 digits ! The decimal string contains 31 digits ! |
Binary/Decimal Palindromes by Charlton Harrison (email) : the longest list in existence ?
[ September 30, 2015 ]
Three more stunning numbers could be retrieved from Sloane's OEIS database.
See index numbers 124, 125 & 126.
[ September 30, 2015 ] A former record binarydecimal palindrome
100110011011011101000001000010000011000111001011100111100011101000
00101110001111001110100111000110000010000100000101110110110011001
1634587141488515712882175158841417854361 The binary palindrome contains 131 digits ! The decimal string contains 40 digits ! |
[ March 8, 2020 ]
Many more numbers could be retrieved from Sloane's OEIS database.
See index numbers up to 147. The record dates from the end of 2015.
[ December 30, 2015 ] The current record binarydecimal palindrome
Search team : Robert G. Wilson v, Charlton Harrison, Ilya Nikulshin & Andrey Astrelin
11010001010011101000000001001100010000000010110001011110100100101011100110101
0101100111010100100101111010001101000000001000110010000000010111001010001011 9335388324586156026843333486206516854238835339 The binary palindrome contains 153 digits ! The decimal string contains 46 digits ! |
Sources Revealed
Binary/Decimal Palindromes by Charlton Harrison (email) : the longest list in existence ?
Neil Sloane's "Integer Sequences" Encyclopedia can be consulted online :
Neil Sloane's Integer Sequences
I sampled the following base X palindromic numbers sequences from the table :
%N Binary expansion is palindromic. under A006995 -- Sum of digits A043261
%N Palindromes in base 3 (written in base 10). under A014190 -- Sum of digits A043262
%N Palindromes in base 4 (written in base 10). under A014192 -- Sum of digits A043263
%N Palindromic in base 5. under A029952 -- Sum of digits A043264
%N Palindromic in base 6. under A029953 -- Sum of digits A043265
%N Palindromic in base 7. under A029954 -- Sum of digits A043266
%N Palindromic in base 8. under A029803 -- Sum of digits A043267
%N Palindromic in base 9. under A029955 -- Sum of digits A043268
%N Palindromes. under A002113 -- Sum of digits A043269
%N Palindromic in base 11. under A029956 -- Sum of digits A043270
%N Palindromic in base 12. under A029957 -- Sum of digits A043271
%N Palindromic in base 13. under A029958 -- Sum of digits A043272
%N Palindromic in base 14. under A029959 -- Sum of digits A043273
%N Palindromic in base 15. under A029960 -- Sum of digits A043274
%N Palindromic in base 16. under A029730 -- Sum of digits A043275
%N Palindromic in bases 2 and 3. under A060792.
%N Palindromic in bases 2 and 10. under A007632.
%N Palindromic in bases 3 and 10. under A007633.
%N Palindromic in bases 4 and 10. under A029961.
%N Palindromic in bases 5 and 10. under A029962.
%N Palindromic in bases 6 and 10. under A029963.
%N Palindromic in bases 7 and 10. under A029964.
%N Palindromic in base 8 and base 10. under A029804.
%N Palindromic in bases 9 and 10. under A029965.
%N Palindromic in bases 11 and 10. under A029966.
%N Palindromic in bases 12 and 10. under A029967.
%N Palindromic in bases 13 and 10. under A029968.
%N Palindromic in bases 14 and 10. under A029969.
%N Palindromic in bases 15 and 10. under A029970.
%N Square in base 2 is a palindrome. under A003166.
%N Squares which are palindromes in base 2. under A029983.
%N n^2 is palindromic in base 3. under A029984.
%N Squares which are palindromic in base 3. under A029985.
%N n^2 is palindromic in base 4. under A029986.
%N Squares which are palindromic in base 4. under A029987.
%N n^2 is palindromic in base 5. under A029988.
%N Squares which are palindromic in base 5. under A029989.
%N n^2 is palindromic in base 6. under A029990.
%N Squares which are palindromic in base 6. under A029991.
%N n^2 is palindromic in base 7. under A029992.
%N Squares which are palindromic in base 7. under A029993.
%N n^2 is palindromic in base 8. under A029805.
%N n in base 8 is a palindromic square. under A029806.
%N n^2 is palindromic in base 9. under A029994.
%N Squares which are palindromic in base 9. under A029995.
%N Square is a palindrome. under A002778.
%N Palindromic Squares. under A002779.
%N n^2 is palindromic in base 11. under A029996.
%N Squares which are palindromic in base 11. under A029997.
%N n^2 is palindromic in base 12. under A029737.
%N Squares which are palindromic in base 12. under A029738.
%N n^2 is palindromic in base 13. under A029998.
%N Squares which are palindromic in base 13. under A029999.
%N n^2 is palindromic in base 14. under A030072.
%N Squares which are palindromes in base 14. under A030074.
%N n^2 is palindromic in base 15. under A030073.
%N Squares which are palindromes in base 15. under A030075.
%N n^2 is palindromic in base 16. under A029733.
%N Palindromic squares in base 16. under A029734.
%N n^3 is palindromic in base 4. under A046231.
%N Cubes which are palindromes in base 4. under A046232.
%N n^3 is palindromic in base 5. under A046233.
%N Cubes which are palindromes in base 5. under A046234.
%N n^3 is palindromic in base 6. under A046235.
%N Cubes which are palindromes in base 6. under A046236.
%N n^3 is palindromic in base 7. under A046237.
%N Cubes which are palindromes in base 7. under A046238.
%N n^3 is palindromic in base 8. under A046239.
%N Cubes which are palindromes in base 8. under A046240.
%N n^3 is palindromic in base 9. under A046241.
%N Cubes which are palindromes in base 9. under A046242.
%N Cube is a palindrome. under A002780.
%N Palindromic cubes. under A002781.
%N n^3 is palindromic in base 11. under A046243.
%N Cubes which are palindromes in base 11. under A046244.
%N n^3 is palindromic in base 12. under A046245.
%N Cubes which are palindromes in base 12. under A046246.
%N n^3 is palindromic in base 13. under A046247.
%N Cubes which are palindromes in base 13. under A046248.
%N n^3 is palindromic in base 14. under A046249.
%N Cubes which are palindromes in base 14. under A046250.
%N n^3 is palindromic in base 15. under A046251.
%N Cubes which are palindromes in base 15. under A046252.
%N n^3 is palindromic in base 16. under A029735.
%N Cubes which are palindromes in base 16. under A029736.
%N Palindromic primes in base 2. under A016041.
%N Palindromic primes in base 3. under A029971.
%N Palindromic primes in base 4. under A029972.
%N Palindromic primes in base 5. under A029973.
%N Palindromic primes in base 6. under A029974.
%N Palindromic primes in base 7. under A029975.
%N Palindromic primes in base 8. under A029976.
%N Octal palindromes which are also primes. under A006341.
%N Palindromic primes in base 9. under A029977.
%N Palindromic primes. under A002385.
%N Palindromic primes in base 11. under A029978.
%N Palindromic primes in base 12. under A029979.
%N Palindromic primes in base 13. under A029980.
%N Palindromic primes in base 14. under A029981.
%N Palindromic primes in base 15. under A029982.
%N Palindromic primes in base 16. under A029732.
%N Palindromic primes in base 10 and base 2. under A046472.
%N Palindromic primes in base 10 and base 3. under A046473.
%N Palindromic primes in base 10 and base 4. under A046474.
%N Palindromic primes in base 10 and base 6. under A046475.
%N Palindromic primes in base 10 and base 7. under A046476.
%N Palindromic primes in base 10 and base 8. under A046477.
%N Palindromic primes in base 10 and base 9. under A046478.
%N Palindromic primes. under A002385.
%N Palindromic primes in base 10 and base 11. under A046479.
%N Palindromic primes in base 10 and base 12. under A046480.
%N Palindromic primes in base 10 and base 13. under A046481.
%N Palindromic primes in base 10 and base 14. under A046482.
%N Palindromic primes in base 10 and base 15. under A046483.
%N Palindromic primes in base 10 and base 16. under A046484.
%N Palindromic primes in bases 2 and 4. under A056130.
%N Palindromic primes in bases 2 and 8. under A056145.
%N Palindromic primes in bases 4 and 8. under A056146.
%N Not palindromic in any base from 2 to n-2. under A016038.
%N Smallest palindrome greater than n in bases n and n+1. under A048268.
%N First palindrome greater than n+2 in bases n+2 and n. under A048269.
%N The first non-trivial (k>n+2) palindromic prime in both bases n and n+2. under A057199.
%N Symmetric bit strings (bit-reverse palindromes),
including as many leading as trailing zeros. under A057890.
Click here to view some of the author's [P. De Geest] entries to the table.
Click here to view some entries to the table about palindromes.
|
More Integer Sequences from Sloane's OEIS database
- A043001 n-th base 3 palindrome that starts with 1. - Clark Kimberling
- A043002 n-th base 3 palindrome that starts with 2. - Clark Kimberling
- A043003 n-th base 4 palindrome that starts with 1. - Clark Kimberling
- A043004 n-th base 4 palindrome that starts with 2. - Clark Kimberling
- A043005 n-th base 4 palindrome that starts with 3. - Clark Kimberling
- A043006 n-th base 5 palindrome that starts with 1. - Clark Kimberling
- A043007 n-th base 5 palindrome that starts with 2. - Clark Kimberling
- A043008 n-th base 5 palindrome that starts with 3. - Clark Kimberling
- A043009 n-th base 5 palindrome that starts with 4. - Clark Kimberling
- A043010 n-th base 6 palindrome that starts with 1. - Clark Kimberling
- A043011 n-th base 6 palindrome that starts with 2. - Clark Kimberling
- A043012 n-th base 6 palindrome that starts with 3. - Clark Kimberling
- A043013 n-th base 6 palindrome that starts with 4. - Clark Kimberling
- A043014 n-th base 6 palindrome that starts with 5. - Clark Kimberling
- A043015 n-th base 7 palindrome that starts with 1. - Clark Kimberling
- A043016 n-th base 7 palindrome that starts with 2. - Clark Kimberling
- A043017 n-th base 7 palindrome that starts with 3. - Clark Kimberling
- A043018 n-th base 7 palindrome that starts with 4. - Clark Kimberling
- A043019 n-th base 7 palindrome that starts with 5. - Clark Kimberling
- A043020 n-th base 7 palindrome that starts with 6. - Clark Kimberling
- A043021 n-th base 8 palindrome that starts with 1. - Clark Kimberling
- A043022 n-th base 8 palindrome that starts with 2. - Clark Kimberling
- A043023 n-th base 8 palindrome that starts with 3. - Clark Kimberling
- A043024 n-th base 8 palindrome that starts with 4. - Clark Kimberling
- A043025 n-th base 8 palindrome that starts with 5. - Clark Kimberling
- A043026 n-th base 8 palindrome that starts with 6. - Clark Kimberling
- A043027 n-th base 8 palindrome that starts with 7. - Clark Kimberling
- A043028 n-th base 9 palindrome that starts with 1. - Clark Kimberling
- A043029 n-th base 9 palindrome that starts with 2. - Clark Kimberling
- A043030 n-th base 9 palindrome that starts with 3. - Clark Kimberling
- A043031 n-th base 9 palindrome that starts with 4. - Clark Kimberling
- A043032 n-th base 9 palindrome that starts with 5. - Clark Kimberling
- A043033 n-th base 9 palindrome that starts with 6. - Clark Kimberling
- A043034 n-th base 9 palindrome that starts with 7. - Clark Kimberling
- A043035 n-th base 9 palindrome that starts with 8. - Clark Kimberling
- A043036 n-th base 10 palindrome that starts with 1. - Clark Kimberling
- A043037 n-th base 10 palindrome that starts with 2. - Clark Kimberling
- A043038 n-th base 10 palindrome that starts with 3. - Clark Kimberling
- A043039 n-th base 10 palindrome that starts with 4. - Clark Kimberling
- A043040 n-th base 10 palindrome that starts with 5. - Clark Kimberling
- A043041 n-th base 10 palindrome that starts with 6. - Clark Kimberling
- A043042 n-th base 10 palindrome that starts with 7. - Clark Kimberling
- A043043 n-th base 10 palindrome that starts with 8. - Clark Kimberling
- A043044 n-th base 10 palindrome that starts with 9. - Clark Kimberling
|
- A043045 a(n)=(s(n)+2)/3, where s(n)=n-th base 3 palindrome that starts with 1. - Clark Kimberling
- A043046 a(n)=(s(n)+1)/3, where s(n)=n-th base 3 palindrome that starts with 2. - Clark Kimberling
- A043047 a(n)=(s(n)+3)/4, where s(n)=n-th base 4 palindrome that starts with 1. - Clark Kimberling
- A043048 a(n)=(s(n)+2)/4, where s(n)=n-th base 4 palindrome that starts with 2. - Clark Kimberling
- A043049 a(n)=(s(n)+1)/4, where s(n)=n-th base 4 palindrome that starts with 3. - Clark Kimberling
- A043050 a(n)=(s(n)+4)/5, where s(n)=n-th base 5 palindrome that starts with 1. - Clark Kimberling
- A043051 a(n)=(s(n)+3)/5, where s(n)=n-th base 5 palindrome that starts with 2. - Clark Kimberling
- A043052 a(n)=(s(n)+2)/5, where s(n)=n-th base 5 palindrome that starts with 3. - Clark Kimberling
- A043053 a(n)=(s(n)+1)/5, where s(n)=n-th base 5 palindrome that starts with 4. - Clark Kimberling
- A043054 a(n)=(s(n)+5)/6, where s(n)=n-th base 6 palindrome that starts with 1. - Clark Kimberling
- A043055 a(n)=(s(n)+4)/6, where s(n)=n-th base 6 palindrome that starts with 2. - Clark Kimberling
- A043056 a(n)=(s(n)+3)/6, where s(n)=n-th base 6 palindrome that starts with 3. - Clark Kimberling
- A043057 a(n)=(s(n)+2)/6, where s(n)=n-th base 6 palindrome that starts with 4. - Clark Kimberling
- A043058 a(n)=(s(n)+1)/6, where s(n)=n-th base 6 palindrome that starts with 5. - Clark Kimberling
- A043059 a(n)=(s(n)+6)/7, where s(n)=n-th base 7 palindrome that starts with 1. - Clark Kimberling
- A043060 a(n)=(s(n)+5)/7, where s(n)=n-th base 7 palindrome that starts with 2. - Clark Kimberling
- A043061 a(n)=(s(n)+4)/7, where s(n)=n-th base 7 palindrome that starts with 3. - Clark Kimberling
- A043062 a(n)=(s(n)+3)/7, where s(n)=n-th base 7 palindrome that starts with 4. - Clark Kimberling
- A043063 a(n)=(s(n)+2)/7, where s(n)=n-th base 7 palindrome that starts with 5. - Clark Kimberling
- A043064 a(n)=(s(n)+1)/7, where s(n)=n-th base 7 palindrome that starts with 6. - Clark Kimberling
- A043065 a(n)=(s(n)+7)/8, where s(n)=n-th base 8 palindrome that starts with 1. - Clark Kimberling
- A043066 a(n)=(s(n)+6)/8, where s(n)=n-th base 8 palindrome that starts with 2. - Clark Kimberling
- A043067 a(n)=(s(n)+5)/8, where s(n)=n-th base 8 palindrome that starts with 3. - Clark Kimberling
- A043068 a(n)=(s(n)+4)/8, where s(n)=n-th base 8 palindrome that starts with 4. - Clark Kimberling
- A043069 a(n)=(s(n)+3)/8, where s(n)=n-th base 8 palindrome that starts with 5. - Clark Kimberling
- A043070 a(n)=(s(n)+2)/8, where s(n)=n-th base 8 palindrome that starts with 6. - Clark Kimberling
- A043071 a(n)=(s(n)+1)/8, where s(n)=n-th base 8 palindrome that starts with 7. - Clark Kimberling
- A043072 a(n)=(s(n)+8)/9, where s(n)=n-th base 9 palindrome that starts with 1. - Clark Kimberling
- A043073 a(n)=(s(n)+7)/9, where s(n)=n-th base 9 palindrome that starts with 2. - Clark Kimberling
- A043074 a(n)=(s(n)+6)/9, where s(n)=n-th base 9 palindrome that starts with 3. - Clark Kimberling
- A043075 a(n)=(s(n)+5)/9, where s(n)=n-th base 9 palindrome that starts with 4. - Clark Kimberling
- A043076 a(n)=(s(n)+4)/9, where s(n)=n-th base 9 palindrome that starts with 5. - Clark Kimberling
- A043077 a(n)=(s(n)+3)/9, where s(n)=n-th base 9 palindrome that starts with 6. - Clark Kimberling
- A043078 a(n)=(s(n)+2)/9, where s(n)=n-th base 9 palindrome that starts with 7. - Clark Kimberling
- A043079 a(n)=(s(n)+1)/9, where s(n)=n-th base 9 palindrome that starts with 8. - Clark Kimberling
- A043080 a(n)=(s(n)+9)/10, where s(n)=n-th base 10 palindrome that starts with 1. - Clark Kimberling
- A043081 a(n)=(s(n)+8)/10, where s(n)=n-th base 10 palindrome that starts with 2. - Clark Kimberling
- A043082 a(n)=(s(n)+7)/10, where s(n)=n-th base 10 palindrome that starts with 3. - Clark Kimberling
- A043083 a(n)=(s(n)+6)/10, where s(n)=n-th base 10 palindrome that starts with 4. - Clark Kimberling
- A043084 a(n)=(s(n)+5)/10, where s(n)=n-th base 10 palindrome that starts with 5. - Clark Kimberling
- A043085 a(n)=(s(n)+4)/10, where s(n)=n-th base 10 palindrome that starts with 6. - Clark Kimberling
- A043086 a(n)=(s(n)+3)/10, where s(n)=n-th base 10 palindrome that starts with 7. - Clark Kimberling
- A043087 a(n)=(s(n)+2)/10, where s(n)=n-th base 10 palindrome that starts with 8. - Clark Kimberling
- A043088 a(n)=(s(n)+1)/10, where s(n)=n-th base 10 palindrome that starts with 9. - Clark Kimberling
- A016038 Strictly non-palindromic numbers:
- n is not palindromic in any base b with 2 ⩽ b ⩽ n-2. - N. J. A. Sloane.
- A100563 Number of bases less than sqrt(n) in which n is a palindrome. - Gordon Robert Hamilton
|
Contributions
Kevin Brown informed me that he has more info about tetrahedral palindromes in other base representations.
Link to his article :
On General Palindromic Numbers
Alain Bex (email) sent me the first palindromic squares in base 12 - go to topic.
Dw (email) found several binary/decimal palindromes of record lengths - go to topic.
Richard Gosiorovsky (email)
Also Palindromic in Base 16 (OEIS A029731)
[ do 7-8/3/2024 7:33 ]
Dear Mr. De Geest,
I would like to ask you for updating the table re. numbers that are palindromic in bases 10 and 16.
I did some progress on it, and found 51 new members of the sequence. See indices 84 up to 134.
Full list of new members is in the text file in the attachment.
Thank you,
Richard Gosiorovsky, Bratislava
When I asked
Richard how he achieved his results he replied:
I was inspired by Eshed Schacham's nice article:
"Finding Binary & Decimal Palindromes"
The method is useful for powers of two bases (2,4,8,16).
For now I do not plan other bases. It took me 3 days of
experimenting (programming) and 2 days of running (CPU time).
If you are interested in I am sending you my piece of code
in C language (palindrom.c) with external function in assembler
allowing multiply two 64-bit integers into 128-bit value.
Now I must go on with my real job, programming of course :)
Richard
//
// Looking for Numbers that are palindromic in bases 10 and 16 simultaneously
//
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#define ull unsigned long long // 64-bit integer
extern ull mul128(ull *c, ull a, ull b); // mul128.asm, see here:
// mul128 PROC
// mov rax, rdx ; rdx - 2nd argument, r8 - 3rd argument
// mul r8 ; multiply rax * r8 -> result = 128-bit rdx:rax
// mov qword ptr [rcx], rdx ; rcx - 1st argument
// ret ; return rax
// mul128 ENDP
inline ull reverse(ull x) { ull q, y=0; while(x) { q=x/10; y=10*(y-q)+x; x=q; } return y; }
inline int is_palind_128(ull h64, ull l64, int sh1, int sh2)
{
while(sh1 >= 0 ) { if ((h64>>sh1 & 0xf) != (l64>>sh2 & 0xf)) return 0; sh1-=4; sh2+=4; } sh1 = 60;
while(sh1 > sh2) { if ((l64>>sh1 & 0xf) != (l64>>sh2 & 0xf)) return 0; sh1-=4; sh2+=4; } // here we test only in lower 64-bit
return 1;
}
// 012345678901234567890
#define FROM 10000000000000LL
#define UPTO 100000000000000LL
#define M4 10000000000LL
#define M8 1000000
#define M12 100
int main(int argc, char *argv[])
{
int sh=-999, k=0;
ull h64, l64; // upper & lower 64-bit of palindrome
for(ull i=FROM; i<UPTO; i++) // i - half of palindrome
{
if (i%1000000000==0) printf(" %lld mld. %d sec. %16llx\r", i/1000000000, clock()/1000, h64);
l64 = mul128(&h64, i/10, UPTO) + reverse(i); // create palindrome: i - for even symmetry, i/10 - for odd symmetry
if (sh==-999) { sh=60; while((h64>>sh & 0xf)==0) sh-=4; } // find initial shift for leading hex digit
if (h64>>(sh+4) & 0xf) sh+=4; // hex digit overflow happened -> increase shift
if (i % M4 == 0) if ((h64 >>(sh ) & 0x000f) != (l64 & 0x000f)) { i+=M4 -1; continue; } // skip this foursome of decimal digits
if (i % M8 == 0) if ((h64 >>(sh- 8) & 0x00f0) != (l64 & 0x00f0)) { i+=M8 -1; continue; }
if (i % M12== 0) if ((h64 >>(sh-16) & 0x0f00) != (l64 & 0x0f00)) { i+=M12-1; continue; }
// 3*4 - first/last 3 hex digits was already tested by 3 upper conditions
if (is_palind_128(h64, l64, sh-3*4, 3*4)) printf(" %4d. %lld %8llx:%016llx %d sec.\n", ++k, i, h64, l64, clock()/1000);
}
printf(" total time = %d sec.\t\t\t\n", clock()/1000); getchar();
}
Eshed Schacham's article can be found following this link:
https://ashdnazg.github.io/articles/22/Finding-Really-Big-Palindromes
As a software developer he also made public his .c code he wrote for this topic and explains the algorithm in great depth.
To my surprise he found 35 new decimal palindromes that are also palindromic in base 2 or binary.
I added them forthwith to my webpage. Please refer to indices 148 up to 183 in the very first
scrolltable of this very page. Impressive if you consider their record lengths.
Richard Gosiorovsky (email)
Dual-base Palindromes
[ do 2/5/2024 6:02 ]
Hi Patrick,
I am sending you in the attachment several
new records for dual-base palindromes:
base 10 & 3: 4 new records → From [71] to [74]
base 10 & 4: 35 new records → From [65] to [99]
base 10 & 5: 100 new records → From [84] to [183]
base 10 & 6: 9 new records → From [110] to [118]
base 10 & 7: 8 new records → From [74] to [81]
base 10 & 8: 43 new records → From [89] to [131]
base 10 & 9: 5 new records → From [71] to [75]
base 10 & 16: 9 new records → From [135] to [143]
Thank you for this interesting entertainment.
For bases 10 & 4, 10 & 8 and 10 & 16 I used practically the same method as I mentioned earlier.
For base pair 10 & 5 I used very similar method, main difference is that solutions don't fit into
128-bit (it prunes much faster) so I rewrite the code using GMP library (GNU multiple precision).
For the rest of base pairs I used optimized brute force method, where I generate all possible
palindromes in one base and check it in another one. In cases where one base is power of 2
it is pretty straightforward (just bits comparison).
In all cases (except 10 & 5) I employ possibility of Intel processor to multiply two 64-bit integers
into 128-bit value (rdx:rax) and division of this 128-bit value into quotient and remainder
(instructions mul, div).
Richard
Richard Gosiorovsky (email)
Dual-base Palindromes (bases 10 & 5)
[ do 5/8/2024 16:44 ]
Hi Patrick, Hi Eshed,
I am here again, I would like to ask you for updating dual-base
palindrome sequence A029962 (bases 10 & 5), where I found 52 new
members (in the attachement). I improved algorithm a bit, but it
is still far from optimal. Changing bases to 10 & 2 I can not
achieve Eshed's records at all. Basic idea remains the same.
Richard
PS: For better understanding I am sending the source code too
(it uses GMP - GNU multiple precision library)
/*
Looking for numbers simultaneously palindromic in bases 10 and 5
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include "gmp.h"
#define ODD 1 // 0 - even symmetry 1 - odd symmetry
#define N 24
#define M (2*N-1) // length of palindrome
mpz_t tmp, aux;
mpz_t D[128], P[128]; // pre-computed constants: D[i] = 10^i, P[i] = 5^i
mpz_t e[128], h[128]; // e[] - end of palindrome, h[] - beginning of palindrome
int d[128], m1, m2; // 5^m = divisor for leading digit
char s[256], s1[256], s2[256];
int ispalind(char *s, int n) { for(int i=0; i<n/2; i++) if (s[i] != s[n-i-1]) return 0; return 1; }
void init_m1(mpz_t x) { m1 = M; do { m1++; mpz_fdiv_q(aux, x, P[m1]); } while (mpz_cmp_ui(aux, 5) >= 0); }
void init_m2(mpz_t x) { m2 = M; do { m2++; mpz_fdiv_q(aux, x, P[m2]); } while (mpz_cmp_ui(aux, 5) >= 0); }
int get_digit1(mpz_t x, int i) // get i-th leading digit of x in base 5
{
mpz_fdiv_q(aux, x, P[m1]);
if (mpz_cmp_ui(aux, 5) >=0) m1++;
if (mpz_cmp_ui(aux, 0) <=0) m1--;
mpz_fdiv_q(aux, x, P[m1-i]);
return mpz_fdiv_ui(aux, 5);
}
int get_digit2(mpz_t x, int i) // get i-th leading digit of x in base 5
{
mpz_fdiv_q(aux, x, P[m2]);
if (mpz_cmp_ui(aux, 5) >=0) m2++;
if (mpz_cmp_ui(aux, 0) <=0) m2--;
mpz_fdiv_q(aux, x, P[m2-i]);
return mpz_fdiv_ui(aux, 5);
}
void recur(int w)
{
if (w==6) { for(int i=0; i<6; i++) printf("%d", d[i]); printf(" %d\"\r", clock()/1000); }
if (w==N)
{
mpz_add(tmp, h[N-1], (ODD==0)?e[N-1]:e[N-2]);
mpz_get_str(s, 5, tmp);
if (ispalind(s, strlen(s)))
{
for(int i=0; i<N; i++) printf("%d", d[i]);
printf(" %d %d sec.\n", ODD, clock()/1000);
}
return;
}
for(d[w]=0; d[w]<=9; d[w]++)
{
mpz_mul_ui(tmp, D[w], d[w]); mpz_add(e[w], e[w-1], tmp);
mpz_mul_ui(tmp, D[M-w-ODD], d[w]); mpz_add(h[w], h[w-1], tmp);
mpz_fdiv_q(tmp, e[w], P[w]);
int f = mpz_fdiv_ui(tmp, 5);
mpz_add(tmp, h[w], D[M-w-ODD]);
if (f==get_digit1(h[w], w) || f==get_digit2(tmp, w)) recur(w+1);
}
}
int main()
{
printf("\n N = %d ODD = %d\n\n", N, ODD);
mpz_init(tmp); mpz_init(aux);
for(int i=1; i<128; i++) { mpz_init(D[i]); mpz_init(P[i]); mpz_init(e[i]); mpz_init(h[i]); }
mpz_set_ui(D[0], 1); for(int i=1; i<128; i++) mpz_mul_ui(D[i], D[i-1], 10);
mpz_set_ui(P[0], 1); for(int i=1; i<128; i++) mpz_mul_ui(P[i], P[i-1], 5);
for(d[0]=1; d[0]<=9; d[0]++)
{
mpz_set_ui(e[0], d[0]);
mpz_mul_ui(h[0], D[M-ODD], d[0]);
int f = mpz_fdiv_ui(e[0], 5);
mpz_add(tmp, h[0], D[M-ODD]);
init_m1(h[0]);
init_m2(tmp);
if (f==get_digit1(h[0], 0) || f==get_digit2(tmp, 0)) recur(1);
}
printf(" total time = %d sec.\t\t\t\n", clock()/1000);
getchar();
}
[ TOP OF PAGE]
( © All rights reserved ) - Last modified : October 7, 2024.
Patrick De Geest - Belgium - Short Bio - Some Pictures
E-mail address : pdg@worldofnumbers.com