Sum of the first n primes is palindromic | |
Sum of the first n odd primes is palindromic | |
Sum of the first n composites is palindromic | |
Sum of the first n odd composites is palindromic | |
Sum of the first n even composites is palindromic | |
Sum of the first n palindromes is palindromic | |
Sum of the first n numbers is palindromic | |
Sum of the first n odd numbers is palindromic | |
Sum of the first n even numbers is palindromic |
1. Sum of the first n primes is palindromic.
Sequence = 2 + 3 + 5 + 7 + 11 + 13 + ... + z
Index entries in OEIS A038582, A038584 and A038583
Other sources : Puzzle 7
Index | n | z | palindromic sum |
---|---|---|---|
1 | 1 | 2 | 2 Prime! |
2 | 2 | 3 | 5 Prime! |
3 | 8 | 19 | 77 |
4 | 7693 | 78347 | 285080582 |
5 | 8510 | 87641 | 352888253 |
6 | 12941 | 139241 | 854848458 |
7 | 146134 | 1959253 | 137372273731 |
8 | 637571 | 9564097 | 2939156519392 |
9 | 27198825 | 516916921 | 6833383883833386 |
10 | 53205635 | 1048924213 | 27155268786255172 by Jud McCranie |
11 | 6283318531 | 155353386241 | 477749724515427947774 by Donovan Johnson |
12 | 7167375533 | 178196630873 | 625179415050514971526 by Donovan Johnson |
13 | 226095996998 | 6433462703963 | 714014821826628128410417 by Giovanni Resta |
14 | 435966708249 | 12702232868389 | 2719564270866680724659172 by Giovanni Resta |
2. Sum of the first n odd primes is palindromic.
Sequence = 3 + 5 + 7 + 11 + 13 + 17 + ... + z
Index entries in OEIS A058845, A058846 and A058847
Index | n | z | palindromic sum |
---|---|---|---|
1 | 1 | 3 | 3 Prime! |
2 | 2 | 5 | 8 |
3 | 49 | 229 | 5115 |
4 | 54 | 257 | 6336 |
5 | 172 | 1031 | 81218 |
6 | 921 | 7213 | 3091903 Prime Curios! |
7 | 1421 | 11863 | 7843487 Prime Curios! |
8 | 12485 | 133853 | 792727297 |
9 | 78653 | 1002073 | 37706560773 |
10 | 1969457 | 31924583 | 30398022089303 |
11 | 5606014 | 97137589 | 263888373888362 |
12 | 90638394 | 1837875227 | 81120957675902118 by Patrick De Geest |
3. Sum of the first n composites is palindromic.
Sequence = 4 + 6 + 8 + 9 + 10 + 12 + ... + z
Index entries in OEIS A053779, A057959 and A053780
Other sources : Puzzle 89
Index | n | z | palindromic sum |
---|---|---|---|
1 | 1 | 4 | 4 |
2 | 22 | 34 | 434 |
3 | 24 | 36 | 505 |
4 | 167 | 215 | 18781 |
5 | 202 | 258 | 27072 |
6 | 226 | 288 | 33633 |
7 | 1443 | 1711 | 1254521 |
8 | 2380 | 2785 | 3360633 |
9 | 3190 | 3708 | 5989895 |
10 | 3952 | 4572 | 9145419 |
11 | 4220 | 4873 | 10411401 |
12 | 16827 | 18986 | 161101161 |
13 | 26304 | 29509 | 390949093 |
14 | 37612 | 42005 | 795303597 |
15 | 40813 | 45534 | 935424539 |
16 | 213501 | 234272 | 25127372152 |
17 | 376524 | 411232 | 77753535777 |
18 | 1920079 | 2074123 | 1997671767991 |
19 | 2061085 | 2225480 | 2300809080032 |
20 | 2635057 | 2841251 | 3754911194573 |
21 | 3463613 | 3728941 | 6476856586746 |
22 | 4268588 | 4590401 | 9825337335289 |
23 | 16513206 | 17643216 | 146015161510641 |
24 | 68101132 | 72349270 | 2468348558438642 |
25 | 166428703 | 176262062 | 14693263036239641 |
26 | 207224360 | 219311147 | 22762189998126722 |
27 | 403784450 | 426454179 | 86234154745143268 |
28 | 421279478 | 444875288 | 93856121312165839 |
29 | 1384813481 | 1457527586 | 1010599968699950101 |
30 | 2758859588 | 2898662182 | 4003657190917563004 |
31 | 3921264376 | 4116490653 | 8080970392930790808 |
32 | 6249167674 | 6553235945 | 20500472188127400502 by Jeff Heleen |
4. Sum of the first n odd composites is palindromic.
Sequence = 9 + 15 + 21 + 25 + 27 + 33 + ... + z
Index entries in OEIS A058848, A058849 and A058850
Other sources : Puzzle 89
Index | n | z | palindromic sum |
---|---|---|---|
1 | 1 | 9 | 9 |
2 | 12 | 55 | 404 |
3 | 25 | 99 | 1441 |
4 | 61 | 215 | 7227 |
5 | 108 | 357 | 20802 |
6 | 211 | 663 | 73337 |
7 | 1344 | 3725 | 2576752 |
8 | 2339 | 6321 | 7576757 Prime Curios! |
9 | 10539 | 26999 | 144666441 |
10 | 78409 | 191363 | 7584554857 |
11 | 283181 | 675861 | 96520502569 |
12 | 1748747 | 4073533 | 3584243424853 |
13 | 1795423 | 4180943 | 3776886886773 |
14 | 2386702 | 5540147 | 6651010101566 |
15 | 2819089 | 6531789 | 9260919190629 |
16 | 179101605 | 400974175 | 36028948184982063 |
17 | 1923088106 | 4248550291 | 4095836722276385904 |
18 | 2822581688 | 6224149881 | 8806146443446416088 |
19 | 7794689270 | 17109266357 | 66832347055074323866 by Jeff Heleen [ May 24, 2000 ] |
20 | 17381011919 | 38023877981 | 331143864040468341133 by Donovan Johnson [ Sep 01, 2012 ] |
21 | 25635268093 | 55995454633 | 719190811555118091917 by Donovan Johnson [ Sep 01, 2012 ] |
22 | 28780043265 | 62836534343 | 906041488626884140609 by Chai Wah Wu [ Dec 06, 2019 ] |
22 | 97973526253 | 212955815417 | 10450905369496350905401 by Chai Wah Wu [ Dec 06, 2019 ] |
5. Sum of the first n even composites is palindromic.
Sequence = 4 + 6 + 8 + 10 + 12 + 14 + ... + z
Index entries in OEIS A028553, A058851 and A028554
Aldo Palindromic numbers of the form n(n+3).
Main source see Palindromes of the form n(n+3)The following substitution shows why the sequence equals x * (x + 3) The sequence can be rewritten as 2 * (2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + ...) The second term is 'the sum of the natural numbers' minus the starting number 1.
Replace it with the general formula we get 2 * [ (n^2 + n)/2 1 ] or [ n^2 + n 2 ]
Substitute n with (x + 1) we get [ (x + 1)^2 + (x + 1) 2 ] and work it out.
The sequence evolves from [ x^2 + 2x + 1 + x + 1 2 ] to [ x^2 + 3x ]
which finally yields to x * (x + 3) QED
Index | n | z | palindromic sum |
---|---|---|---|
1 | 1 | 4 | 4 |
2 | 8 | 18 | 88 |
3 | 28 | 58 | 868 |
4 | 66 | 134 | 4554 |
5 | 88 | 178 | 8008 |
6 | 211 | 424 | 45154 |
7 | 298 | 598 | 89698 |
8 | 671 | 1344 | 452254 |
9 | 2126 | 4254 | 4526254 |
10 | 2998 | 5998 | 8996998 |
11 | 28814 | 57630 | 830333038 |
12 | 29369 | 58740 | 862626268 |
13 | 29998 | 59998 | 899969998 |
14 | 63701 | 127404 | 4058008504 |
15 | 212206 | 424414 | 45032023054 |
16 | 212671 | 425344 | 45229592254 |
17 | 299998 | 599998 | 89999699998 |
18 | 636776 | 1273554 | 405485584504 |
19 | 2122206 | 4244414 | 4503764673054 |
20 | 2861419 | 5722840 | 8187727277818 |
21 | 2999998 | 5999998 | 8999996999998 |
22 | 9443423 | 18886848 | 89178266287198 |
23 | 21341691 | 42683384 | 455467838764554 |
24 | 28862883 | 57725768 | 833066101660338 |
25 | 29999998 | 59999998 | 899999969999998 |
26 | 212325206 | 424650414 | 45081993739918054 |
27 | 289053683 | 578107368 | 83552032523025538 |
28 | 294127328 | 588254658 | 86510885958801568 |
29 | 294174669 | 588349340 | 86538736763783568 |
30 | 299999998 | 599999998 | 89999999699999998 = Infinite pattern |
Continued at Palindromes of the form n(n+3) |
6. Sum of the first n palindromes is palindromic.
Sequence = 1 + 2 + 3 + 4 + 5 + 6 + ... + z
Index entries in OEIS A046486 and A046487
Index | n | z | palindromic sum |
---|---|---|---|
1 | 1 | 1 | 1 |
2 | 2 | 2 | 3 Prime! |
3 | 3 | 3 | 6 |
4 | 12 | 33 | 111 |
5 | 16 | 77 | 353 Prime! |
6 | 47 | 383 | 7557 |
7 | 314 | 21512 | 2376732 by Patrick De Geest |
7. Sum of the first n numbers is palindromic.
Sequence = 1 + 2 + 3 + 4 + 5 + 6 + ... + z
Main source see Palindromic Triangulars
8. Sum of the first n odd numbers is palindromic.
Sequence = 1 + 3 + 5 + 7 + 9 + 11 + ... + z
Main source see Palindromic Squares
9. Sum of the first n even numbers is palindromic.
Sequence = 2 + 4 + 6 + 8 + 10 + 12 + ... + z
Main source see Palindromic Pronic Numbers
Enoch Haga (email) from California, USA.
Jeff Heleen (email) from New Hampshire, USA.
G. L. Honaker, Jr. (email) from Bristol, Virginia, USA.
Jud McCranie (email) from USA.
Carlos Rivera (email) from Monterrey, Nuevo León, México.
[ TOP OF PAGE]