Concept originated dd.[ December 27, 1999 ]
Find more smallest Squares, Cubes and higher Powers whose digits occur a same number of times ?
E.g. 100112 = 100220121 has exactly three zero's, three ones and three two's !
Note that the number of different digits in the decimal expansion may differ from their required frequency.
The next tables already give most solutions for frequencies 1 to 6 for the powers 2 to 5.
Though the numbers are definitely 'base-related' they surely display a notable beauty !
Some of the first questions I came up with are :
Are there always solutions possible for any frequency ?
What are the possible shortcuts one can make while programming this puzzle ?
Freq- uency | Square Root A052069 | Square A052070 General Classification for case P2 | Class |
---|---|---|---|
1 | 0 | 0 | P2(1.1)A |
2 | 88 | 7744 | P2(2.2)A |
3 | 10.011 | 100220121 | P2(3.3)A |
4 | 31.646.191 | 1001481404808481 | P2(4.4)A |
5 | 16.431.563 3.180.566.996 | 269996262622969 10116006416044464016 (is next one) | P2(3.5)A P2(4.5)A |
6 | 667.567.716 | 445646655445456656 by Jeff Heleen - [ January 17, 2000 ] | P2(3.6)A |
7 | 10.715.008.859 | 114811414848448481881 by Jeff Heleen - [ January 20, 2000 ] | P2(3.7)A |
8 | 652.246.443.112 | 425425422552255452244544 by Jon E. Schoenfield - [ August 18, 2007 ] | P2(3.8)A |
9 | 15.647.628.653.832 | 244848282488224248488284224 by Jon E. Schoenfield - [ August 18, 2007 ] | P2(3.9)A |
10 | ? | ? | ? |
11 | ? | ? | ? |
Freq- uency | Cube Root A052071 | Cube A052072 General Classification for case P3 | Class |
---|---|---|---|
1 | 0 | 0 | P3(1.1)A |
2 | 11 | 1331 | P3(2.2)A |
3 | 888 | 700227072 | P3(3.3)A |
4 | 2.830.479 | 22676697737363992239 | P3(5.4)A |
5 | 120.023.142 | 1728999927211172788179288 by Jeff Heleen - [ January 21, 2000 ] | P3(5.5)A |
6 | 6.351.783.105 | 256263633328535368685258882625 by Jeff Heleen - [ January 25, 2000 ] | P3(5.6)A |
7 | ? | ? | ? |
8 | ? | ? | ? |
9 | ? | ? | ? |
10 | ? | ? | ? |
11 | ? | ? | ? |
Freq- uency | 4th Root A052093 | 4th Power (by Jeff Heleen) A052094 General Classification for case P4 | Class |
---|---|---|---|
1 | 0 | 0 | P4(1.1)A |
2 | 207 | 1836036801 | P4(5.2)A |
3 | 130.398 | 289123718973983667216 | P4(7.3)A |
4 | 5.694.207 | 1051315345334684056886604801 | P4(7.4)A |
5 | 426.424.828 | 33065106952901022329359695121613056 | P4(7.5)A |
6 | 562.379.596.107 | 100027225332362313560971766691937509957725591601 | P4(8.6)A |
7 | ? | ? | ? |
8 | ? | ? | ? |
9 | ? | ? | ? |
10 | ? | ? | ? |
11 | ? | ? | ? |
Freq- uency | 5th Root A054212 | 5th Power (by Jeff Heleen) A054213 General Classification for case P5 | Class |
---|---|---|---|
1 | 0 | 0 | P5(1.1)A |
2 | 2.955 | 225313610074846875 | P5(9.2)A |
3 | 49.995 | 312343781246875156246875 | P5(8.3)A |
4 | 10.365.589 | 119665765800843104737370354851986949 | P5(9.4)A |
5 | 75.418.384 | 2439979134100773706931016420916722663424 | P5(8.5)A |
6 | 2.592.877.410 | 117195225794292252449115584887987847895470100000 | P5(8.6)A |
7 | ? | ? | ? |
8 | ? | ? | ? |
9 | ? | ? | ? |
10 | ? | ? | ? |
11 | ? | ? | ? |
Take a look at the following table and decide if you want
to partake to complete it.
The task looks formidable but with joined efforts I think we can
make a success.
Frequency with which the digits occur in Pn | ||||||||
---|---|---|---|---|---|---|---|---|
'd' differ. digits | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ... |
1 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | ... |
2 | 2.1 | 2.2 | 2.3 | 2.4 | 2.5 | 2.6 | 2.7 | ... |
3 | 3.1 | 3.2 | 3.3 | 3.4 | 3.5 | 3.6 | 3.7 | ... |
4 | 4.1 | 4.2 | 4.3 | 4.4 | 4.5 | 4.6 | 4.7 | ... |
5 | 5.1 | 5.2 | 5.3 | 5.4 | 5.5 | 5.6 | 5.7 | ... |
6 | 6.1 | 6.2 | 6.3 | 6.4 | 6.5 | 6.6 | 6.7 | ... |
7 | 7.1 | 7.2 | 7.3 | 7.4 | 7.5 | 7.6 | 7.7 | ... |
8 | 8.1 | 8.2 | 8.3 | 8.4 | 8.5 | 8.6 | 8.7 | ... |
9 | 9.1 | 9.2 | 9.3 | 9.4 | 9.5 | 9.6 | 9.7 | ... |
10 | 10.1 | 10.2 | 10.3 | 10.4 | 10.5 | 10.6 | 10.7 | ... |
What it means is best explained with an example.
Take for instance cell 3.2 of the square table P2.
This means we want to find the smallest, the largest and the total of all squares
whose decimal expansion contains exactly 3 different digits (from the 10 available)
and these 3 digits each occur 2 times (the order is irrelevant - but leading zero's are not allowed).
Clearly the first solution for P2(3.2) is 478 which gives square 228484.
To indicate it's the smallest solution I'll add a superscript 'A' to the notation,
a 'Z' for the largest or greatest one, and a 'T' for the total number of solutions.
The final notation for the above example becomes thus
P2(3.2)A = 4782 = 228484
Frequency with which the digits occur in P2 | ||||||||
---|---|---|---|---|---|---|---|---|
'd' differ. digits | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ... |
1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ... |
2 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | ... |
3 | 13 | 8 | 12 | 0 | 1 | 4 | 2 | ... |
4 | 36 | 38 | 71 | 102 | 210 | ? | ? | ... |
5 | 66 | 165 | 992 | 5527 | ? | ? | ? | ... |
6 | 96 | 1020 | 20700 | ? | ? | ? | ? | ... |
7 | 123 | 5360 | ? | ? | ? | ? | ? | ... |
8 | 97 | 24553 | ? | ? | ? | ? | ? | ... |
9 | 83 | 98442 | ? | ? | ? | ? | ? | ... |
10 | 87 | 468372 | ? | ? | ? | ? | ? | ... |
JH = Jeff Heleen
JES = Jon E. Schoenfield
The smallest solutions
The largest solutions
P2(1.1)Z = 32 = 9
P2(1. >1)Z = nihil
P2(2.1)Z = 92 = 81
P2(2.2)Z = 882 = 7744 = P2(2.2)A
P2(2. >2)Z = nihil ?
P2(3.1)Z = 312 = 961
P2(3.2)Z = 8932 = 797449
P2(3.3)Z = 310862 = 966339396
P2(3.4)Z = nihil
P2(3.5)Z = 164315632 = 269996262622969
= P2(3.5)A
P2(3.6)Z = 8954391002 = 801811181808810000
P2(3.7)Z = 150085150002 = 225255522505225000000
P2(4.1)Z = 992 = 9801
P2(4.2)Z = 99332 = 98664489
P2(4.3)Z = 9997022 = 999404088804
P2(4.4)Z = 999933332 = 9998666644448889
P2(4.5)Z = 99999333332 = 99998666664444488889
P2(4.6)Z = 9999993333332 = 999998666666444444888889
P2(4.7)Z = 999999933333332 = 9999998666666644444448888889
P2(5.1)Z = 3112 = 96721
P2(5.2)Z = 993302 = 9866448900
P2(5.3)Z = 316204502 = 999852858202500
P2(5.4)Z = 99999415722 = 99998831443413831184
P2(5.5)Z = 31622131674852 = 9999592116615516661225225 (JH)
P2(5.6)Z = 9999993644859392 = 999998728972281878121728711721 (JH)
P2(6.1)Z = 9682 = 937024
P2(6.2)Z = 9975352 = 995076076225
P2(6.3)Z = 9999377492 = 999875501875187001
P2(6.4)Z = 9999941572002 = 999988314434138311840000
P2(6.5)Z = 9999994032782262 = 999998806556808076875565707076 (JH)
P2(7.1)Z = 31422 = 9872164
P2(7.2)Z = 99943022 = 99886072467204
P2(7.3)Z = 316209872042 = 999886831755531737616
P2(8.1)Z = 99162 = 98327056
P2(8.2)Z = 999377892 = 9987561670208521
P2(8.3)Z = 9999443616812 = 999888726457622541145761
P2(9.1)Z = 303842 = 923187456
P2(9.2)Z = 9994166812 = 998833702261055761
P2(9.3)Z = 316210178081822 = 999888767225363175346145124
P2(10.1)Z = 990662 = 9814072356
P2(10.2)Z = 99943634882 = 99887301530267526144
P2(10.3)Z = 9999443871187112 = 999888777330214565264406301521
The total number of solutions
P2(1.1)T = 4
P2(4.1)T = 36
P2(4.2)T = 38
P2(4.3)T = 71
P2(4.4)T = 102
P2(4.5)T = 210 (JH)
P2(5.1)T = 66
P2(5.2)T = 165
P2(5.3)T = 992
P2(5.4)T = 5527 (JH)
P2(5.5)T = ?
P2(6.1)T = 96
P2(6.2)T = 1020
P2(6.3)T = 20700 (JH)
P2(7.1)T = 123
P2(7.2)T = 5360
P2(7.3)T = ?
P2(8.1)T = 97
P2(8.2)T = 24553
P2(8.3)T = ?
P2(9.1)T = 83
P2(9.2)T = 98442 (JH)
P2(10.1)T = 87
P2(10.2)T = 468372 (JH)
While working on the data for this page I came up with the following
infinite pattern that I like to share with you :
932 = 8649
99332 = 98664489
9993332 = 998666444889
999933332 = 9998666644448889
99999333332 = 99998666664444488889
Each square belongs to the general classification P2(4.n) with n = 1, 2, 3, 4, 5, etc.
This one was sent in by Jeff Heleen where he noticed that the root consists of only 2 digits
3333032 = 111090889809
333330032 = 1111089088998009
33333300032 = 11111088908899980009
Each square belongs to the general classification P2(4.n) with n = 3, 4, 5, etc.
332 = 1089 could belong to the pattern also if the condition of the root having 2 distinct digits is dropped.
But since I haven't a solution for P2(4.2) of this kind, the pattern's smoothness is lost!
Another neat arrangement of digits is for this member of P2(4.5):
36001800362 = 1296.1296.2916.1296.1296
Periods used here only to separate out the interesting stuff.
Here is my collection of such numbers with palindromic squareroots.
02 = 0
12 = 1
22 = 4
32 = 9
42 = 16
52 = 25
62 = 36
72 = 49
82 = 64
92 = 81
332 = 1089
442 = 1936
552 = 3025
662 = 4356
882 = 7744
992 = 9801
1812 = 32761
1912 = 36481
2322 = 53824
2522 = 63504
2722 = 73984
2822 = 79524
2922 = 85264
3232 = 104329
3532 = 124609
6162 = 379456
6262 = 391876
6862 = 470596
7172 = 514089
7372 = 543169
7572 = 573049
7772 = 603729
7972 = 635209
9292 = 863041
14412 = 2076481
19912 = 3964081
25522 = 6512704
28822 = 8305924
29922 = 8952064
45542 = 20738916
75572 = 57108249
77772 = 60481729
104012 = 108180801
285822 = 816930724
324232 = 1051250929
358532 = 1285437609 pandigital
401042 = 1608330816
504052 = 2540664025
507052 = 2570997025
846482 = 7165283904 pandigital
977792 = 9560732841 pandigital
Jeff Heleen (email) from New Hampshire, USA.
[ TOP OF PAGE]