World!Of Numbers | |||
Numbers whose digits occur with same frequency ~ Classification P5 | |||
Class_P2 Class_P3 Class_P4 |
Frequency with which the digits occur in P5 | ||||||||
---|---|---|---|---|---|---|---|---|
'd' differ. digits | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ... |
1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | ... |
2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ... |
3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ... |
4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | ... |
5 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | ... |
6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ... |
7 | 1 | 0 | 0 | 0 | 0 | 0 | ? | ... |
8 | 1 | 0 | 3 | 0 | 1 | 11 | ? | ... |
9 | 0 | 1 | 1 | 8 | 84 | ? | ? | ... |
10 | 0 | 0 | 7 | 133 | ? | ? | ? | ... |
MSB = Michael S. Branicky
FAS = Frank A. Stevenson
The smallest solutions
P5(1.1)A = 05 = 0
P5(1. >1)A = nihil
P5(2.1)A = 25 = 32 = P5(2.1)Z
P5(2. >1)A = nihil
P5(3.1)A = 35 = 243 = P5(3.1)Z
P5(3. >1)A = nihil
P5(4.1)A = 45 = 1024
P5(4. >1)A = nihil
P5(5.1)A = 75 = 16807
P5(5. >1)A = nihil
P5(6.1)A = 145 = 537824 = P5(6.1)Z
P5(6. >1)A = nihil
P5(7.1)A = 165 = 1048576 = P5(7.1)Z
P5(7. >1 <9)A = nihil
P5(7.9)A = 28267341327365 = 180478226704404170728722666146008118010614142774868467228082176 (FAS)
P5(7.10)A = 780747155401025 = 2901028884340293341289422141398144918194908893831439300310212924008032 (FAS)
P5(8.1)A = 385 = 79235168 = P5(8.1)Z
P5(8.2)A = nihil
P5(8.3)A = 499955 = 312343781246875156246875
P5(8.4)A = nihil
P5(8.5)A = 754183845 = 2439979134100773706931016420916722663424 = P5(8.5)Z
P5(8.6)A = 25928774105 = 117195225794292252449115584887987847895470100000
P5(8.7)A = 1006611134195 = 10334956410016814668660393585195309584134568401459883099 (MSB)
P5(8.8)A = 39893427097785 = 1010431164918909763339703798486498718473866680301776494470190368 (MSB)
P5(9.1)A = nihil
P5(9.2)A = 29555 = 225313610074846875 = P5(9.2)Z
P5(9.3)A = 1931255 = 268653488211536407470703125 = P5(9.3)Z
P5(9.4)A = 103655895 = 119665765800843104737370354851986949
P5(9.5)A = 6315641855 = 100481814610246818738257752346024507337365625
P5(9.6)A = ?5 = ?
P5(10.1)A = nihil
P5(10.2)A = nihil
P5(10.3)A = 6439055 = 110690152879433875483274690625
P5(10.4)A = 631740395 = 1006220638584953725761454302767138894199
The largest solutions
P5(1.1)Z = 15 = 1
P5(1. >1)Z = nihil
P5(2.1)Z = 25 = 32 = P5(2.1)A
P5(2. >1)Z = nihil
P5(3.1)Z = 35 = 243 = P5(3.1)A
P5(3. >1)Z = nihil
P5(4.1)Z = 55 = 3125
P5(4. >1)Z = nihil
P5(5.1)Z = 85 = 32768
P5(5. >1)Z = nihil
P5(6.1)Z = 145 = 537824 = P5(6.1)A
P5(6. >1)Z = nihil
P5(7.1)Z = 165 = 1048576 = P5(7.1)A
P5(7. >1)Z = nihil
P5(8.1)Z = 385 = 79235168 = P5(8.1)A
P5(8.2)Z = nihil
P5(8.3)Z = 615575 = 883867634090375064499557
P5(8.4)Z = nihil
P5(8.5)Z = 754183845 = 2439979134100773706931016420916722663424 = P5(8.5)A
P5(8.6)Z = 38350203035 = 829541919891852538715325897428343419274377521743
P5(8.7)Z = ?5 = ?
P5(8.8)Z = ?5 = ?
P5(9.1)Z = nihil
P5(9.2)Z = 29555 = 225313610074846875 = P5(9.2)A
P5(9.3)Z = 1931255 = 268653488211536407470703125 = P5(9.3)A
P5(9.4)Z = 147688685 = 702645136480123183310487625524077568
P5(9.5)Z = 9927587155 = 964314153757084568107154987089060693334196875
P5(9.6)Z = ?5 = ?
P5(10.1)Z = nihil
P5(10.2)Z = nihil
P5(10.3)Z = 9849275 = 926872965448613570921013853407
P5(10.4)Z = 999008285 = 9950512253367684107778194042198520634368
The total number of solutions
Here is my collection of such numbers with palindromic fifth roots.
05 = 0
15 = 1
Jeff Heleen (email) from New Hampshire, USA.
[ TOP OF PAGE]