Classification P3 
| Frequency with which the digits occur in P3 |
'd' differ. digits | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ... |
1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ... |
2 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | ... |
3 | 4 | 1 | 1 | 0 | 0 | 0 | 0 | ... |
4 | 7 | 1 | 0 | 0 | 0 | 0 | ? | ... |
5 | 8 | 3 | 5 | 1 | 2 | 4 | ? | ... |
6 | 10 | 8 | 19 | 45 | ? | ? | ? | ... |
7 | 3 | 28 | 110 | ? | ? | ? | ? | ... |
8 | 4 | 41 | 831 | ? | ? | ? | ? | ... |
9 | 0 | 74 | 6858 | ? | ? | ? | ? | ... |
10 | 0 | 138 | ? | ? | ? | ? | ? | ... |
The Making of an Exhaustive List
The smallest solutions
P
3(1.1)
A = 0
3 = 0
P
3(1. >1)
A = nihil
P
3(2.1)
A = 3
3 = 27
P
3(2.2)
A = 11
3 = 1331 =
P3(2.2)Z
P
3(2. >2)
A = nonexistant ?
P
3(3.1)
A = 5
3 = 125
P
3(3.2)
A = 62
3 = 238328 =
P3(3.2)Z
P
3(3.3)
A = 888
3 = 700227072 =
P3(3.3)Z
P
3(3. >3)
A = nonexistant ?
P
3(4.1)
A = 12
3 = 1728
P
3(4.2)
A = 303
3 = 27818127 =
P3(4.2)Z
P
3(4. >2)
A = nonexistant ?
P
3(5.1)
A = 22
3 = 10648
P
3(5.2)
A = 1412
3 = 2815166528
P
3(5.3)
A = 56592
3 = 181244621426688
P
3(5.4)
A = 2830479
3 = 22676697737363992239 =
P3(5.4)Z
P
3(5.5)
A = 120023142
3 = 1728999927211172788179288
P
3(5.6)
A = 6351783105
3 = 256263633328535368685258882625
P
3(6.1)
A = 59
3 = 205379
P
3(6.2)
A = 4755
3 = 107510668875
P
3(6.3)
A = 496941
3 = 122719757596965621
P
3(6.4)
A = 47802109
3 = 109229808820515515981029
P
3(6.5)
A = 4849795571
3 = 114069699564596150060045954411
P
3(7.1)
A = 135
3 = 2460375
P
3(7.2)
A =
221113 = 10809986553631
P
3(7.3)
A = 4654191
3 = 100816729790622689871
P
3(7.4)
A = 1001802781
3 = 1005418098917074987897545541
P
3(8.1)
A = 289
3 = 24137569
P
3(8.2)
A = 110185
3 = 1337726800581625
P
3(8.3)
A = 46440546
3 = 100159454656890483891336
P
3(8.4)
A = 21546921816
3 = 10003585938508415641831399466496
P
3(9.1)
A = nihil
P
3(9.2)
A = 470095
3 = 103885969226107375
P
3(9.3)
A = 464209617
3 = 100032794277593492545888113
P
3(9.4)
A = 464165579022
3 = 100004327671547355628148253326718648
P
3(10.1)
A = nihil
P
3(10.2)
A = 2158479
3 = 10056421854778936239
P
3(10.3)
A = 4642110594
3 = 100033726751278963952981464584
The largest solutions
P3(1.1)Z = 23 = 8
P3(1. >1)Z = nihil
P3(2.1)Z = 43 = 64
P3(2.2)Z = 113 = 1331 = P3(2.2)A
P3(2. >2)Z = nihil ?
P3(3.1)Z = 93 = 729
P3(3.2)Z = 623 = 238328 = P3(3.2)A
P3(3.3)Z = 8883 = 700227072 = P3(3.3)A
P3(3. >3)Z = nonexistant ?
P3(4.1)Z = 213 = 9261
P3(4.2)Z = 3033 = 27818127 = P3(4.2)A
P3(4. >2)Z = nonexistant ?
P3(5.1)Z = 413 = 68921
P3(5.2)Z = 20783 = 8972978552
P3(5.3)Z = 781833 = 477899958554487
P3(5.4)Z = 28304793 = 22676697737363992239 = P3(5.4)A
P3(5.5)Z = 1311588253 = 2256277705056006702765625
P3(5.6)Z = 84396494823 = 601136681133830360316800808168
P3(6.1)Z = 973 = 912673
P3(6.2)Z = 97093 = 915215787829
P3(6.3)Z = 9884583 = 965772115692567912
P3(6.4)Z = 992599963 = 977963756545433564479936
P3(6.5)Z = 99467068043 = 984097094780740676997868806464
P3(7.1)Z = 2033 = 8365427
P3(7.2)Z = 456753 = 95287441921875
P3(7.3)Z = 99649323 = 989516449813334165568
P3(7.4)Z = 21527358243 = 9976362336324497457957556224
P3(8.1)Z = 3193 = 32461759
P3(8.2)Z = 2109163 = 9382716173855296
P3(8.3)Z = 997853643 = 993574730695766088308544
P3(8.4)Z = 464150896823 = 99994838144343656268511251322568
P3(9.1)Z = nihil
P3(9.2)Z = 9826173 = 948752253468679113
P3(9.3)Z = 9997745733 = 999323871440541388225070517
P3(9.4)Z = 9999896039123 = 999968812060234813516120343055446528
P3(10.1)Z = nihil
P3(10.2)Z = 46317933 = 99368200745116834257
P3(10.3)Z = 99992577813 = 999777350826262438514680310541
The total number of solutions
P3(1.1)T = 3
03 = 0
13 = 1
23 = 8
P3(1. >1)T = 0 all nonexistant ?
P3(2.1)T = 2
33 = 27
43 = 64
P3(2.2)T = 1 a unique solution !
113 = 1331
P3(2. >2)T = 0 all nonexistant ?
P3(3.1)T = 4
53 = 125
63 = 216
83 = 512
93 = 729
P3(3.2)T = 1 a unique solution !
623 = 238328
P3(3.3)T = 1 a unique solution !
8883 = 700227072
P3(3. >3)T = 0 all nonexistant ?
P3(4.1)T = 7
123 = 1728 | 183 = 5832
133 = 2197 | 193 = 6859
163 = 4096 | 213 = 9261
173 = 4913
P3(4.2)T = 1 a unique solution !
3033 = 27818127
P3(4. >2)T = 0 all nonexistant ?
P3(5.1)T = 8
223 = 10648 | 323 = 32768
243 = 13824 | 353 = 42875
273 = 19683 | 383 = 54872
293 = 24389 | 413 = 68921
P3(5.2)T = 3
14123 = 2815166528
16943 = 4861163384
20783 = 8972978552
P3(5.3)T = 5
565923 = 181244621426688
585243 = 200448128101824
655773 = 282003588255033
708693 = 355933540044909
781833 = 477899958554487
P3(5.4)T = 1 a unique solution !
28304793 = 22676697737363992239
P3(5.5)T = 2
1200231423 = 1728999927211172788179288
1311588253 = 2256277705056006702765625
P3(5.6)T = 4
63517831053 = 256263633328535368685258882625
73641800553 = 399367937595765965775933666375
80011000803 = 512211244405555444021120512000
84396494823 = 601136681133830360316800808168
P3(6.1)T = 10
593 = 205379 | 763 = 438976
663 = 287496 | 843 = 592704
693 = 328509 | 883 = 681472
733 = 389017 | 933 = 804357
753 = 421875 | 973 = 912673
P3(6.2)T = 8
47553 = 107510668875 | 64433 = 267463420307
53993 = 157376536199 | 90783 = 748118742552
61813 = 236143627741 | 94133 = 834034807997
62743 = 246963938824 | 97093 = 915215787829
P3(6.3)T = 19
P3(6.4)T = 45
P3(7.1)T = 3
1353 = 2460375
1453 = 3048625
2033 = 8365427
P3(7.2)T = 28
P3(7.3)T = 110
P3(8.1)T = 4
2893 = 24137569
2973 = 26198073
3023 = 27543608
3193 = 32461759
P3(8.2)T = 41
P3(8.3)T = 831
P3(9.1)T = 0
P3(9.2)T = 74
P3(9.3)T = 6858
P3(10.1)T = 0
P3(10.2)T = 138
P3(10.3)T = ?
Here is my collection of such numbers with palindromic cuberoots.
03 = 0
13 = 1
23 = 8
Contributions
Jeff Heleen (email) from New Hampshire, USA.
[
TOP OF PAGE]
Patrick De Geest - Belgium
- Short Bio - Some Pictures
E-mail address : pdg@worldofnumbers.com