World!Of Numbers | |||
Numbers whose digits occur with same frequency ~ Classification P3 | |||
Class_P2 Class_P4 Class_P5 |
Frequency with which the digits occur in P3 | ||||||||
---|---|---|---|---|---|---|---|---|
'd' differ. digits | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ... |
1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ... |
2 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | ... |
3 | 4 | 1 | 1 | 0 | 0 | 0 | 0 | ... |
4 | 7 | 1 | 0 | 0 | 0 | 0 | ? | ... |
5 | 8 | 3 | 5 | 1 | 2 | 4 | ? | ... |
6 | 10 | 8 | 19 | 45 | ? | ? | ? | ... |
7 | 3 | 28 | 110 | ? | ? | ? | ? | ... |
8 | 4 | 41 | 831 | ? | ? | ? | ? | ... |
9 | 0 | 74 | 6858 | ? | ? | ? | ? | ... |
10 | 0 | 138 | ? | ? | ? | ? | ? | ... |
GR = Giovanni Resta
The smallest solutions
P3(1.1)A = 03 = 0
P3(1. >1)A = nihil
P3(2.1)A = 33 = 27
P3(2.2)A = 113 = 1331 = P3(2.2)Z
P3(2. >2)A = nonexistant ?
P3(3.1)A = 53 = 125
P3(3.2)A = 623 = 238328 = P3(3.2)Z
P3(3.3)A = 8883 = 700227072 = P3(3.3)Z
P3(3. >3)A = nonexistant ?
P3(4.1)A = 123 = 1728
P3(4.2)A = 3033 = 27818127 = P3(4.2)Z
P3(4. >2)A = nonexistant ?
P3(5.1)A = 223 = 10648
P3(5.2)A = 14123 = 2815166528
P3(5.3)A = 565923 = 181244621426688
P3(5.4)A = 28304793 = 22676697737363992239 = P3(5.4)Z
P3(5.5)A = 1200231423 = 1728999927211172788179288
P3(5.6)A = 63517831053 = 256263633328535368685258882625
P3(5.7)Z = 2677458158173 = 19194114355415391344355399945943513 (GR)
P3(6.1)A = 593 = 205379
P3(6.2)A = 47553 = 107510668875
P3(6.3)A = 4969413 = 122719757596965621
P3(6.4)A = 478021093 = 109229808820515515981029
P3(6.5)A = 48497955713 = 114069699564596150060045954411
P3(7.1)A = 1353 = 2460375
P3(7.2)A = 221113 = 10809986553631
P3(7.3)A = 46541913 = 100816729790622689871
P3(7.4)A = 10018027813 = 1005418098917074987897545541
P3(8.1)A = 2893 = 24137569
P3(8.2)A = 1101853 = 1337726800581625
P3(8.3)A = 464405463 = 100159454656890483891336
P3(8.4)A = 215469218163 = 10003585938508415641831399466496
P3(9.1)A = nihil
P3(9.2)A = 4700953 = 103885969226107375
P3(9.3)A = 4642096173 = 100032794277593492545888113
P3(9.4)A = 4641655790223 = 100004327671547355628148253326718648
P3(10.1)A = nihil
P3(10.2)A = 21584793 = 10056421854778936239
P3(10.3)A = 46421105943 = 100033726751278963952981464584
The largest solutions
P3(1.1)Z = 23 = 8
P3(1. >1)Z = nihil
P3(2.1)Z = 43 = 64
P3(2.2)Z = 113 = 1331 = P3(2.2)A
P3(2. >2)Z = nihil ?
P3(3.1)Z = 93 = 729
P3(3.2)Z = 623 = 238328 = P3(3.2)A
P3(3.3)Z = 8883 = 700227072 = P3(3.3)A
P3(3. >3)Z = nonexistant ?
P3(4.1)Z = 213 = 9261
P3(4.2)Z = 3033 = 27818127 = P3(4.2)A
P3(4. >2;2)Z = nonexistant ?
P3(5.1)Z = 413 = 68921
P3(5.2)Z = 20783 = 8972978552
P3(5.3)Z = 781833 = 477899958554487
P3(5.4)Z = 28304793 = 22676697737363992239 = P3(5.4)A
P3(5.5)Z = 1311588253 = 2256277705056006702765625
P3(5.6)Z = 84396494823 = 601136681133830360316800808168
P3(6.1)Z = 973 = 912673
P3(6.2)Z = 97093 = 915215787829
P3(6.3)Z = 9884583 = 965772115692567912
P3(6.4)Z = 992599963 = 977963756545433564479936
P3(6.5)Z = 99467068043 = 984097094780740676997868806464
P3(7.1)Z = 2033 = 8365427
P3(7.2)Z = 456753 = 95287441921875
P3(7.3)Z = 99649323 = 989516449813334165568
P3(7.4)Z = 21527358243 = 9976362336324497457957556224
P3(8.1)Z = 3193 = 32461759
P3(8.2)Z = 2109163 = 9382716173855296
P3(8.3)Z = 997853643 = 993574730695766088308544
P3(8.4)Z = 464150896823 = 99994838144343656268511251322568
P3(9.1)Z = nihil
P3(9.2)Z = 9826173 = 948752253468679113
P3(9.3)Z = 9997745733 = 999323871440541388225070517
P3(9.4)Z = 9999896039123 = 999968812060234813516120343055446528
P3(10.1)Z = nihil
P3(10.2)Z = 46317933 = 99368200745116834257
P3(10.3)Z = 99992577813 = 999777350826262438514680310541
The total number of solutions
P3(9.1)T = 0
P3(9.2)T = 74
P3(9.3)T = 6858
P3(10.1)T = 0
P3(10.2)T = 138
P3(10.3)T = ?
Here is my collection of such numbers with palindromic cuberoots.
03 = 0
13 = 1
23 = 8
Jeff Heleen (email) from New Hampshire, USA.
[ TOP OF PAGE]