World!Of
Numbers
HOME plate
WON |
The Nine Digits Page 8
with some Ten Digits (pandigital) exceptions
rood Page 1 rood Page 2 rood Page 3 rood Page 4 rood Page 5 rood Page 6 rood Page 7

When I use the term ninedigital in these articles I always refer to a strictly zeroless pandigital (digits from 1 to 9 each appearing just once).

Eight Page

  Topic 8.3   [ September 11, 2025 ]
The sum of all nine- and pandigital numbers.

What is the sum of all ninedigitals ?

The manual approach by just counting them up is just unmanageable. There are \(9!\) terms which is \(362880\).

There is however a feasible approach by counting first the units, then the tens, the hundreds, the thousands and so on.

All nine digits \(1, 2, 3, 4, 5, 6, 7, 8\) and \(9\) occur several times as last digit (units). A possible order of the series
of numbers \(23456789\) can then be placed in the eight previous places.

There are \(8! = 8 * 7 * \ldots * 2 * 1 = 40320\) possibilities of those series of numbers.
So there are \(40320\) numbers ending with the digit \(1\).

In a like manner one can reason that there are \(40320\) numbers ending with digit \(2\),
\(40320\) numbers ending with a \(3\), etcetera.

We can find out that all ninedigits are discussed that way since
\(9 * 40320 = 9 * 8! = 9!\)

So, the sum of all ninedigits with units \(1\) is easy to calculate now
\(40320 * ( 1 + 2 + \ldots + 8 + 9 ) = 40320 * 45 = 1814400\).

The second-to-last digit in a number indicates the tens digit. In the same way as with the units,
it can be shown that there are \(1814400\) tens. Likewise, there are \(1814400\) hundreds, and so on.

The total sum of all nine-digit numbers considered is thus
\(1814400 * ( 100000000 + ... + 100 + 10 + 1 ) =\)
\(1814400 * 111111111\)
With a modern computer we find an unabridged answer to this multiplication
\(201599999798400\)

The following Pari/GP code confirms our result

a=0;forperm(9,p,for(i=1,9,a+=p[i]*10^(i-1)));print(a)

The output is also \(201599999798400\)

 

What is the sum of all pandigitals ?

This manual approach is analogue to the ninedigital case.

The manual approach by just counting them up is just unmanageable. There are \(9*9!\) terms which is \(3265920\).

All ten digits \(0, 1, 2, 3, 4, 5, 6, 7, 8 and 9\) occur several times as last digit (units). A possible order of the series
of numbers \(123456789\) can then be placed in the nine previous places.

There are \(9! = 9 * 8 * 7 * \ldots * 2 * 1 = 362880\) possibilities of those series of numbers.
So there are \(362880\) numbers ending with the digit \(0\).

In a like manner one can reason that there are \(362880\) numbers ending with digit \(1\),
\(362880\) numbers ending with a \(2\), etcetera.

We can find out that all pandigitals are discussed that way since
\(10 * 362880 = 10 * 9! = 10!\)

So, the sum of all pandigitals with units 0 is easy to calculate now
\(362880 * ( 0 + 1 + 2 + \ldots + 8 + 9 ) = 362880 * 45 = 16329600\).

The second-to-last digit in a number indicates the tens digit. In the same way as with the units,
it can be shown that there are \(16329600\) tens. Likewise, there are \(16329600\) hundreds, and so on.

The total sum of all nine-digit numbers considered is thus
\(16329600 * ( 1000000000 + \ldots + 100 + 10 + 1 ) =\)
\(16329600 * 1111111111\)
With a modern computer we find an unabridged answer to this multiplication
\(18143999998185600\)

But this is not the end of the story as pandigitals are not supposed to start with a leading zero.
We have to subtract those. Luckily we have already calculated them when dealing with ninedigitals (\(201599999798400\)).

All we have to do is calculate the difference
\(18143999998185600 - 201599999798400 = 17942399998387200\) and there we have our final result.

a=0;for(n=1,10!,d=numtoperm(10,n+10!-1);
if(d[1]<>10,a+=sum(i=1,#d,(d[i]%10)*10^(#d-i)))); print(a)

The output of the above Pari/GP code is also \(17942399998387200\)

Sources :
Formula para calcular la suma de las N combinaciones posibles con M digitos consecutivos
Reken mee : de som van alle negencijferige getallen waarin elk van de cijfers van 1 t.e.m. 9 slechts één keer voorkomt (Jaargang 28 pag 22-24)
OEIS A050278 - Pandigital numbers: numbers containing the digits 0-9. Version 1: each digit appears exactly once.
OEIS A065583 - Sum of numbers which in base n have (n-1) distinct nonzero digits.
OEIS A071268 - Sum of all digit permutations of the concatenation of first n numbers.
OEIS A213880 - a(n) = sum of n-digit numbers with distinct nonzero digits.


  Topic 8.2   [ August 24, 2025 ]
Nine- and pandigital's equal to the sum of two, three and four positive and/or negative fifthpowers.

Case of ninedigitals Case of pandigitals

One beautiful solution with only  TWO  fifthpowers !
It is the most privileged ninedigital.
And only the digits 0 and 5 are used, five in total.
The difference between the two terms \(50-5\) is \(45\) which is the digitsum of any nine- or pandigital.

\(\Large{\bbox[lightyellow,5px, border:1px green solid]{{\color{blue}{312496875}}={\color{purple}{50^5-5^5}}}}\)


Ninedigital solutions with  THREE  fifthpowers. Here is a complete list, one column with positive terms and another with
mixed signs terms. Do you know how many of both kinds exist ?
I counted  \(15\)  solutions for the case of positive terms only. Let me name them the second most privileged ninedigitals.
And there are  \(46\)  solutions for the case with mixed signs terms. These are the third most privileged ninedigitals.

\({\color{blueviolet}{128754693}}=21^5+34^5+38^5\)

\({\color{blueviolet}{192543867}}=10^5+34^5+43^5\)

\({\color{blueviolet}{247963518}}=30^5+33^5+45^5\)

\({\color{blueviolet}{296453871}}=32^5+32^5+47^5\)

\({\color{blueviolet}{312749856}}=4^5+12^5+50^5\)

\({\color{blueviolet}{418295736}}=3^5+10^5+53^5\)

\({\color{blueviolet}{451782693}}=8^5+32^5+53^5\)

\({\color{blueviolet}{453169782}}=17^5+32^5+53^5\)

\({\color{blueviolet}{564732189}}=2^5+45^5+52^5\)

\({\color{blueviolet}{643752198}}=9^5+45^5+54^5\)

\({\color{blueviolet}{783291456}}=14^5+22^5+60^5\)

\({\color{blueviolet}{823196475}}=11^5+34^5+60^5\)

\({\color{blueviolet}{832679145}}=36^5+41^5+58^5\)

\({\color{blueviolet}{854361927}}=1^5+25^5+61^5\)

\({\color{blueviolet}{862319745}}=1^5+46^5+58^5\)

 

\({\color{maroon}{146932587}}=(-7)^5+(-9)^5+43^5\)

\({\color{maroon}{157286493}}=(-19)^5+(-22)^5+44^5\)

\({\color{maroon}{157324869}}=(-22)^5+(-75)^5+76^5\)

\({\color{maroon}{184279536}}=3^5+(-12)^5+45^5\)

\({\color{maroon}{184523976}}=(-4)^5+(-5)^5+45^5\)

\({\color{maroon}{184527639}}=(-3)^5+(-3)^5+45^5\)

\({\color{maroon}{214937856}}=(-98)^5+(-100)^5+114^5\)

\({\color{maroon}{249673851}}=11^5+(-42)^5+52^5\)

\({\color{maroon}{253416879}}=8^5+(-17)^5+48^5\)

\({\color{maroon}{268794351}}=14^5+(-49)^5+56^5\)

\({\color{maroon}{274315896}}=(-93)^5+(-108)^5+117^5\qquad\)

\({\color{maroon}{278931456}}=(-28)^5+(-60)^5+64^5\)

\({\color{maroon}{293854617}}=25^5+(-72)^5+74^5\)

\({\color{maroon}{316894257}}=(-15)^5+22^5+50^5\)

\({\color{maroon}{318756249}}=(-1)^5+(-45)^5+55^5\)

\({\color{maroon}{352714968}}=43^5+(-51)^5+56^5\)

\({\color{maroon}{364921875}}=(-10)^5+35^5+50^5\)

\({\color{maroon}{381675249}}=(-20)^5+40^5+49^5\)

\({\color{maroon}{413729568}}=(-2)^5+(-34)^5+54^5\)

\({\color{maroon}{429856317}}=(-21)^5+(-37)^5+55^5\)

\({\color{maroon}{473826915}}=(-18)^5+42^5+51^5\)

\({\color{maroon}{531962784}}=36^5+(-38)^5+56^5\)

\({\color{maroon}{539726481}}=17^5+(-70)^5+74^5\)

\({\color{maroon}{542319768}}=(-10)^5+33^5+55^5\)

\({\color{maroon}{567914832}}=(-4)^5+(-43)^5+59^5\)

\({\color{maroon}{589324167}}=100^5+103^5+(-116)^5\)

\({\color{maroon}{623495718}}=39^5+(-54)^5+63^5\)

\({\color{maroon}{629835417}}=53^5+(-55)^5+59^5\)

\({\color{maroon}{647931285}}=8^5+(-62)^5+69^5\)

\({\color{maroon}{654871392}}=24^5+(-42)^5+60^5\)

\({\color{maroon}{712856493}}=(-16)^5+(-42)^5+61^5\)

\({\color{maroon}{725193468}}=41^5+(-61)^5+68^5\)

\({\color{maroon}{734925168}}=(-21)^5+(-59)^5+68^5\)

\({\color{maroon}{738245619}}=(-29)^5+40^5+58^5\)

\({\color{maroon}{768954132}}=(-23)^5+36^5+59^5\)

\({\color{maroon}{781435269}}=(-12)^5+21^5+60^5\)

\({\color{maroon}{786431592}}=3^5+(-60)^5+69^5\)

\({\color{maroon}{786439125}}=6^5+(-60)^5+69^5\)

\({\color{maroon}{854971326}}=(-44)^5+53^5+57^5\)

\({\color{maroon}{856247193}}=(-12)^5+48^5+57^5\)

\({\color{maroon}{923684157}}=(-40)^5+(-70)^5+77^5\)

\({\color{maroon}{928653417}}=24^5+(-87)^5+90^5\)

\({\color{maroon}{948172635}}=(-21)^5+(-72)^5+78^5\)

\({\color{maroon}{954327681}}=2^5+(-46)^5+65^5\)

\({\color{maroon}{983417625}}=(-10)^5+(-39)^5+64^5\)

\({\color{maroon}{983517624}}=(-1)^5+(-39)^5+64^5\)


Ninedigital solutions with  FOUR  fifthpowers.
At the left the first few and last of  \(191\)  solutions with positive terms and
at the right a batch from so many solutions with mixed signs terms with \(z\leqslant2000\).

\({\color{maroon}{124398756}}=12^5+13^5+32^5+39^5\)

\({\color{maroon}{127436958}}=10^5+27^5+35^5+36^5\)

\({\color{maroon}{128375469}}=1^5+29^5+31^5+38^5\)

\({\color{maroon}{128463597}}=24^5+25^5+29^5+39^5\)

\({\color{maroon}{128635749}}=14^5+19^5+25^5+41^5\)

\({\color{maroon}{128754936}}=3^5+21^5+34^5+38^5\)

\({\color{maroon}{129346875}}=5^5+30^5+35^5+35^5\)

\({\color{maroon}{134597268}}=11^5+25^5+34^5+38^5\)

\({\color{maroon}{134957286}}=3^5+20^5+35^5+38^5\)

\({\color{maroon}{143962785}}=14^5+18^5+33^5+40^5\)

\({\color{maroon}{146938275}}=18^5+19^5+26^5+42^5\)

\({\color{maroon}{149268537}}=23^5+25^5+28^5+41^5\)

\({\color{maroon}{935871264}}=17^5+29^5+37^5+61^5\)

\({\color{maroon}{942783156}}=2^5+24^5+39^5+61^5\)

\({\color{maroon}{945127368}}=6^5+29^5+43^5+60^5\)

\({\color{maroon}{948237165}}=10^5+17^5+51^5+57^5\)

\({\color{maroon}{952164387}}=4^5+19^5+32^5+62^5\)

\({\color{maroon}{952681743}}=21^5+25^5+49^5+58^5\)

\({\color{maroon}{963514782}}=7^5+16^5+54^5+55^5\)

\({\color{maroon}{968572431}}=5^5+30^5+47^5+59^5\)

\({\color{maroon}{973825146}}=7^5+22^5+35^5+62^5\)

\({\color{maroon}{978421356}}=4^5+25^5+35^5+62^5\)

\({\color{maroon}{982571634}}=20^5+21^5+42^5+61^5\)

\({\color{maroon}{984516273}}=12^5+34^5+49^5+58^5\)

\({\color{blue}{123456789}}=v^5+w^5+x^5+y^5+z^5\)

\({\color{maroon}{148596732}}=229^5+(-290)^5+(-378)^5+391^5\)

\({\color{maroon}{172359648}}=(-456)^5+(-550)^5+(-1366)^5+1370^5\)

\({\color{maroon}{176839542}}=(-222)^5+244^5+279^5+(-289)^5\)

\({\color{maroon}{182365974}}=(-133)^5+199^5+253^5+(-265)^5\)

\({\color{maroon}{183946257}}=710^5+977^5+1066^5+(-1196)^5\)

\({\color{maroon}{293754681}}=(-69)^5+(-171)^5+(-183)^5+204^5\)

\({\color{maroon}{317846925}}=46^5+93^5+134^5+(-138)^5\)

\({\color{maroon}{327149856}}=(-12)^5+82^5+112^5+(-116)^5\)

\({\color{maroon}{416985723}}=(-36)^5+139^5+174^5+(-184)^5\)

\({\color{maroon}{521438976}}=(-128)^5+166^5+308^5+(-310)^5\)

\({\color{maroon}{538196427}}=(-72)^5+186^5+187^5+(-214)^5\)

\({\color{maroon}{683215975}}=34^5+81^5+154^5+(-155)^5\)

\({\color{maroon}{741258396}}=282^5+(-345)^5+(-508)^5+517^5\)

\({\color{maroon}{798651423}}=(-141)^5+344^5+457^5+(-477)^5\)

\({\color{maroon}{816379425}}=(-63)^5+(-106)^5+(-164)^5+168^5\)

\({\color{maroon}{873146925}}=(-39)^5+(-100)^5+(-151)^5+155^5\)

\({\color{maroon}{912386574}}=520^5+(-600)^5+(-861)^5+875^5\)

\({\color{maroon}{936587214}}=(-123)^5+(-140)^5+(-168)^5+185^5\)

\({\color{maroon}{938574216}}=(-201)^5+209^5+288^5+(-290)^5\)

\({\color{maroon}{985134726}}=(-40)^5+146^5+185^5+(-195)^5\)

\({\color{maroon}{985631427}}=(-182)^5+(-198)^5+(-269)^5+286^5\)

\({\color{blue}{987654321}}=v^5+w^5+x^5+y^5+z^5\)

 

One beautiful solution with only  TWO  fifthpowers !
It is the most privileged pandigital.
And only digits 0,5,6,7 and 8 are used, five in total.
The difference between the two terms \(78-60\) is \(18\) which divides our pandigital.

\(\Large{\bbox[mintcream,5px, border:1px green solid]{{\color{blue}{2109574368}}={\color{purple}{78^5-60^5}}}}\)


Pandigital solutions with  THREE  fifthpowers. Here is a complete list, one column with positive terms and another with
mixed signs terms. Do you know how many of both kinds exist ?
I counted  \(55\)  solutions for the case of positive terms only. Let me name them the second most privileged pandigitals.
And there are  \(199\)  solutions for the case with mixed signs terms. These are the third most privileged pandigitals.

\({\color{maroon}{1286375904}}=33^5+48^5+63^5\qquad\)

\({\color{maroon}{1396087452}}=15^5+56^5+61^5\)

\({\color{maroon}{1438750269}}=18^5+45^5+66^5\)

\({\color{maroon}{1642938507}}=26^5+59^5+62^5\)

\({\color{maroon}{1752849306}}=39^5+50^5+67^5\)

\({\color{maroon}{1846509723}}=5^5+49^5+69^5\)

\({\color{maroon}{1974053268}}=3^5+33^5+72^5\)

\({\color{maroon}{2017596384}}=56^5+56^5+62^5\)

\({\color{maroon}{2195740638}}=42^5+59^5+67^5\)

\({\color{maroon}{2318094657}}=52^5+60^5+65^5\)

\({\color{maroon}{2537418069}}=5^5+18^5+76^5\)

\({\color{maroon}{2561430897}}=49^5+59^5+69^5\)

\({\color{maroon}{2637805941}}=8^5+64^5+69^5\)

\({\color{maroon}{3018624975}}=15^5+42^5+78^5\)

\({\color{maroon}{3082145967}}=18^5+20^5+79^5\)

\({\color{maroon}{3198204657}}=49^5+52^5+76^5\)

\({\color{maroon}{3284067951}}=16^5+46^5+79^5\)

\({\color{maroon}{3421869507}}=11^5+59^5+77^5\)

\({\color{maroon}{3692780145}}=8^5+46^5+81^5\)

\({\color{maroon}{3719528640}}=12^5+26^5+82^5\)

\({\color{maroon}{3754820169}}=16^5+70^5+73^5\)

\({\color{maroon}{3926481075}}=55^5+67^5+73^5\)

\({\color{maroon}{4035671982}}=50^5+67^5+75^5\)

\({\color{maroon}{4059217638}}=37^5+49^5+82^5\)

\({\color{maroon}{4196527380}}=9^5+27^5+84^5\)

\({\color{maroon}{4312869705}}=9^5+42^5+84^5\)

\({\color{maroon}{4320971865}}=26^5+57^5+82^5\)

\({\color{maroon}{4539687120}}=36^5+63^5+81^5\)

\({\color{maroon}{4628017593}}=23^5+45^5+85^5\)

\({\color{maroon}{4930621875}}=45^5+75^5+75^5\)

\({\color{maroon}{4985027631}}=9^5+15^5+87^5\)

\({\color{maroon}{4986753201}}=6^5+49^5+86^5\)

\({\color{maroon}{5320687419}}=36^5+75^5+78^5\)

\({\color{maroon}{5406781392}}=48^5+59^5+85^5\)

\({\color{maroon}{5429136087}}=23^5+76^5+78^5\)

\({\color{maroon}{5893617024}}=54^5+66^5+84^5\)

\({\color{maroon}{6250347819}}=71^5+73^5+75^5\)

\({\color{maroon}{6405237918}}=3^5+44^5+91^5\)

\({\color{maroon}{6894057213}}=22^5+77^5+84^5\)

\({\color{maroon}{7049258613}}=59^5+67^5+87^5\)

\({\color{maroon}{7069352841}}=9^5+78^5+84^5\)

\({\color{maroon}{7215640983}}=56^5+70^5+87^5\)

\({\color{maroon}{7239854601}}=9^5+76^5+86^5\)

\({\color{maroon}{7359204861}}=13^5+68^5+90^5\)

\({\color{maroon}{7386491025}}=70^5+74^5+81^5\)

\({\color{maroon}{7398641250}}=48^5+77^5+85^5\)

\({\color{maroon}{7498215360}}=18^5+74^5+88^5\)

\({\color{maroon}{7594382016}}=14^5+48^5+94^5\)

\({\color{maroon}{7923840651}}=5^5+81^5+85^5\)

\({\color{maroon}{8237045961}}=73^5+78^5+80^5\)

\({\color{maroon}{8615970432}}=4^5+31^5+97^5\)

\({\color{maroon}{9260384157}}=77^5+80^5+80^5\)

\({\color{maroon}{9368140257}}=20^5+60^5+97^5\)

\({\color{maroon}{9603821457}}=72^5+81^5+84^5\)

\({\color{maroon}{9825170643}}=36^5+48^5+99^5\)

 

\({\color{maroon}{1054286793}}=62^5+(-72)^5+73^5\)

\({\color{maroon}{1054926873}}=(-66)^5+(-80)^5+89^5\)

\({\color{maroon}{1059687234}}=(-24)^5+(-49)^5+67^5\)

\({\color{maroon}{1075349826}}=(-19)^5+21^5+64^5\)

\({\color{maroon}{1089437526}}=(-30)^5+(-75)^5+81^5\)

\({\color{maroon}{1246358907}}=(-18)^5+(-21)^5+66^5\)

\({\color{maroon}{1250693487}}=38^5+(-49)^5+68^5\)

\({\color{maroon}{1293045768}}=(-57)^5+(-63)^5+78^5\)

\({\color{maroon}{1362874950}}=(-25)^5+52^5+63^5\)

\({\color{maroon}{1394568702}}=(-15)^5+56^5+61^5\)

\({\color{maroon}{1397048256}}=100^5+142^5+(-146)^5\)

\({\color{maroon}{1432869507}}=(-13)^5+(-68)^5+78^5\)

\({\color{maroon}{1468279350}}=(-5)^5+27^5+68^5\)

\({\color{maroon}{1524836907}}=(-9)^5+(-33)^5+69^5\)

\({\color{maroon}{1532906847}}=(-1)^5+54^5+64^5\)

\({\color{maroon}{1548923067}}=(-15)^5+(-27)^5+69^5\)

\({\color{maroon}{1568720493}}=(-25)^5+53^5+65^5\)

\({\color{maroon}{1569027843}}=(-15)^5+(-55)^5+73^5\)

\({\color{maroon}{1620394875}}=11^5+(-36)^5+70^5\)

\({\color{maroon}{1639254078}}=(-9)^5+(-44)^5+71^5\)

\({\color{maroon}{1642708539}}=52^5+(-53)^5+70^5\)

\({\color{maroon}{1683790254}}=(-57)^5+(-57)^5+78^5\)

\({\color{maroon}{1684907325}}=(-51)^5+60^5+66^5\)

\({\color{maroon}{1690432857}}=(-8)^5+25^5+70^5\)

\({\color{maroon}{1692870543}}=56^5+(-72)^5+79^5\)

\({\color{maroon}{1750389264}}=(-3)^5+(-45)^5+72^5\)

\({\color{maroon}{1768392405}}=(-48)^5+54^5+69^5\)

\({\color{maroon}{1846305792}}=8^5+(-96)^5+100^5\)

\({\color{maroon}{1857964032}}=(-56)^5+(-84)^5+92^5\)

\({\color{maroon}{1890653724}}=(-21)^5+(-63)^5+78^5\)

\({\color{maroon}{1924835076}}=57^5+(-69)^5+78^5\)

\({\color{maroon}{1932408765}}=(-8)^5+(-19)^5+72^5\)

\({\color{maroon}{1936047825}}=(-15)^5+18^5+72^5\)

\({\color{maroon}{1936784520}}=31^5+(-44)^5+73^5\)

\({\color{maroon}{1957328064}}=(-18)^5+30^5+72^5\)

\({\color{maroon}{2048671593}}=(-10)^5+(-30)^5+73^5\)

\({\color{maroon}{2071354869}}=15^5+(-19)^5+73^5\)

\({\color{maroon}{2341608795}}=11^5+(-102)^5+106^5\)

\({\color{maroon}{2387146950}}=(-12)^5+27^5+75^5\)

\({\color{maroon}{2405371968}}=14^5+(-42)^5+76^5\)

\({\color{maroon}{2437950681}}=42^5+(-80)^5+89^5\)

\({\color{maroon}{2450891367}}=39^5+(-62)^5+80^5\)

\({\color{maroon}{2506987143}}=7^5+(-52)^5+78^5\)

\({\color{maroon}{2518439607}}=(-33)^5+45^5+75^5\)

\({\color{maroon}{2583761904}}=(-22)^5+(-67)^5+83^5\)

\({\color{maroon}{2704895613}}=4^5+(-18)^5+77^5\)

\({\color{maroon}{2740165893}}=(-2)^5+(-43)^5+78^5\)

\({\color{maroon}{2785601349}}=34^5+(-43)^5+78^5\)

\({\color{maroon}{2840931576}}=(-9)^5+65^5+70^5\)

\({\color{maroon}{2891645703}}=(-44)^5+66^5+71^5\)

\({\color{maroon}{2917506843}}=(-11)^5+61^5+73^5\)

\({\color{maroon}{2946180357}}=90^5+117^5+(-120)^5\)

\({\color{maroon}{2970654831}}=(-21)^5+57^5+75^5\)

\({\color{maroon}{2983507461}}=38^5+(-75)^5+88^5\)

\({\color{maroon}{3018254976}}=(-32)^5+51^5+77^5\)

\({\color{maroon}{3052941867}}=(-25)^5+(-27)^5+79^5\)

\({\color{maroon}{3107628945}}=16^5+(-52)^5+81^5\)

\({\color{maroon}{3124879650}}=(-10)^5+53^5+77^5\)

\({\color{maroon}{3149206875}}=11^5+(-110)^5+114^5\)

\({\color{maroon}{3169458720}}=(-9)^5+(-87)^5+96^5\)

\({\color{maroon}{3207459168}}=5^5+(-37)^5+80^5\)

\({\color{maroon}{3276840951}}=(-9)^5+10^5+80^5\)

\({\color{maroon}{3279401568}}=(-17)^5+(-46)^5+81^5\)

\({\color{maroon}{3298014567}}=(-57)^5+70^5+74^5\)

\({\color{maroon}{3467198250}}=5^5+(-59)^5+84^5\)

\({\color{maroon}{3486725109}}=(-3)^5+(-9)^5+81^5\)

\({\color{maroon}{3487960512}}=163^5+386^5+(-387)^5\)

\({\color{maroon}{3604581792}}=24^5+(-70)^5+88^5\)

\({\color{maroon}{3604971582}}=9^5+(-123)^5+126^5\)

\({\color{maroon}{3612409758}}=110^5+187^5+(-189)^5\)

\({\color{maroon}{3647812950}}=189^5+265^5+(-274)^5\)

\({\color{maroon}{3648579021}}=142^5+322^5+(-323)^5\)

\({\color{maroon}{3690472158}}=(-39)^5+(-58)^5+85^5\)

\({\color{maroon}{3704162958}}=(-15)^5+(-19)^5+82^5\)

\({\color{maroon}{3762049851}}=11^5+(-88)^5+98^5\)

\({\color{maroon}{3952740186}}=103^5+118^5+(-125)^5\)

\({\color{maroon}{3968257401}}=(-71)^5+(-154)^5+156^5\qquad\)

\({\color{maroon}{4017235968}}=8^5+(-44)^5+84^5\)

\({\color{maroon}{4018957632}}=10^5+(-53)^5+85^5\)

\({\color{maroon}{4073869251}}=46^5+(-109)^5+114^5\)

\({\color{maroon}{4095132768}}=8^5+(-90)^5+100^5\)

\({\color{maroon}{4208761593}}=(-54)^5+(-62)^5+89^5\)

\({\color{maroon}{4253781069}}=61^5+(-92)^5+100^5\)

\({\color{maroon}{4382516907}}=(-3)^5+(-57)^5+87^5\)

\({\color{maroon}{4520318976}}=(-56)^5+76^5+76^5\)

\({\color{maroon}{4568972013}}=(-61)^5+77^5+77^5\)

\({\color{maroon}{4572863910}}=(-57)^5+63^5+84^5\)

\({\color{maroon}{4576298301}}=45^5+(-50)^5+86^5\)

\({\color{maroon}{4582706931}}=49^5+(-143)^5+145^5\)

\({\color{maroon}{4583921076}}=(-88)^5+(-147)^5+151^5\)

\({\color{maroon}{4609182357}}=(-27)^5+62^5+82^5\)

\({\color{maroon}{4756921830}}=(-96)^5+(-141)^5+147^5\)

\({\color{maroon}{4789203651}}=(-72)^5+(-144)^5+147^5\)

\({\color{maroon}{4806952173}}=(-51)^5+59^5+85^5\)

\({\color{maroon}{4829530716}}=(-51)^5+63^5+84^5\)

\({\color{maroon}{4831972056}}=(-31)^5+(-105)^5+112^5\)

\({\color{maroon}{4851976032}}=(-28)^5+44^5+86^5\)

\({\color{maroon}{4852916307}}=90^5+90^5+(-93)^5\)

\({\color{maroon}{4892607315}}=(-44)^5+67^5+82^5\)

\({\color{maroon}{4928576301}}=(-48)^5+(-99)^5+108^5\)

\({\color{maroon}{4932075618}}=28^5+(-37)^5+87^5\)

\({\color{maroon}{4952637801}}=(-23)^5+48^5+86^5\)

\({\color{maroon}{5032914786}}=18^5+(-77)^5+95^5\)

\({\color{maroon}{5042981637}}=(-72)^5+(-107)^5+116^5\)

\({\color{maroon}{5086237914}}=(-13)^5+40^5+87^5\)

\({\color{maroon}{5176328409}}=(-39)^5+(-78)^5+96^5\)

\({\color{maroon}{5179648032}}=(-48)^5+66^5+84^5\)

\({\color{maroon}{5186023974}}=(-31)^5+60^5+85^5\)

\({\color{maroon}{5196374208}}=36^5+(-90)^5+102^5\)

\({\color{maroon}{5290634187}}=(-32)^5+(-62)^5+91^5\)

\({\color{maroon}{5290738641}}=78^5+(-111)^5+114^5\)

\({\color{maroon}{5346708192}}=110^5+124^5+(-132)^5\)

\({\color{maroon}{5371890642}}=(-27)^5+(-100)^5+109^5\)

\({\color{maroon}{5384206719}}=(-50)^5+63^5+86^5\)

\({\color{maroon}{5413867920}}=(-69)^5+(-107)^5+116^5\)

\({\color{maroon}{5421067389}}=(-70)^5+(-83)^5+102^5\)

\({\color{maroon}{5481320769}}=(-129)^5+(-137)^5+155^5\)

\({\color{maroon}{5642903718}}=75^5+(-120)^5+123^5\)

\({\color{maroon}{5709643182}}=(-48)^5+(-63)^5+93^5\)

\({\color{maroon}{5746218930}}=(-1)^5+(-61)^5+92^5\)

\({\color{maroon}{5761049832}}=(-15)^5+60^5+87^5\)

\({\color{maroon}{5780431269}}=(-12)^5+(-75)^5+96^5\)

\({\color{maroon}{5809614732}}=(-25)^5+(-110)^5+117^5\)

\({\color{maroon}{5871260493}}=(-26)^5+(-64)^5+93^5\)

\({\color{maroon}{5904867231}}=(-1)^5+(-8)^5+90^5\)

\({\color{maroon}{5934016782}}=104^5+157^5+(-159)^5\)

\({\color{maroon}{5943276018}}=(-15)^5+33^5+90^5\)

\({\color{maroon}{5974102386}}=(-67)^5+78^5+85^5\)

\({\color{maroon}{6095734218}}=33^5+(-87)^5+102^5\)

\({\color{maroon}{6179283450}}=(-3)^5+(-60)^5+93^5\)

\({\color{maroon}{6237845109}}=(-3)^5+(-19)^5+91^5\)

\({\color{maroon}{6239851740}}=17^5+(-18)^5+91^5\)

\({\color{maroon}{6241958370}}=(-4)^5+(-59)^5+93^5\)

\({\color{maroon}{6243719085}}=48^5+(-67)^5+94^5\)

\({\color{maroon}{6309127584}}=(-14)^5+37^5+91^5\)

\({\color{maroon}{6327981045}}=(-2)^5+(-84)^5+101^5\)

\({\color{maroon}{6350917482}}=17^5+(-71)^5+96^5\)

\({\color{maroon}{6391257408}}=(-14)^5+(-158)^5+160^5\)

\({\color{maroon}{6403128975}}=(-177)^5+(-228)^5+240^5\)

\({\color{maroon}{6457932108}}=115^5+137^5+(-144)^5\)

\({\color{maroon}{6512890374}}=(-51)^5+(-90)^5+105^5\)

\({\color{maroon}{6540817392}}=(-27)^5+75^5+84^5\)

\({\color{maroon}{6857923401}}=6^5+(-90)^5+105^5\)

\({\color{maroon}{6879531042}}=(-60)^5+73^5+89^5\)

\({\color{maroon}{6910724358}}=21^5+(-70)^5+97^5\)

\({\color{maroon}{6915042738}}=(-21)^5+72^5+87^5\)

\({\color{maroon}{7029146583}}=162^5+215^5+(-224)^5\)

\({\color{maroon}{7039145268}}=(-24)^5+39^5+93^5\)

\({\color{maroon}{7039185462}}=(-32)^5+41^5+93^5\)

\({\color{maroon}{7081452639}}=2^5+(-58)^5+95^5\)

\({\color{maroon}{7143829506}}=(-6)^5+77^5+85^5\)

\({\color{maroon}{7182365094}}=(-72)^5+(-129)^5+135^5\)

\({\color{maroon}{7230894516}}=(-21)^5+(-71)^5+98^5\)

\({\color{maroon}{7269485301}}=(-59)^5+(-84)^5+104^5\)

\({\color{maroon}{7319562480}}=74^5+(-81)^5+97^5\)

\({\color{maroon}{7340681295}}=3^5+(-99)^5+111^5\)

\({\color{maroon}{7364981052}}=30^5+(-99)^5+111^5\)

\({\color{maroon}{7425309618}}=3^5+(-50)^5+95^5\)

\({\color{maroon}{7526439810}}=(-42)^5+73^5+89^5\)

\({\color{maroon}{7536048192}}=(-66)^5+(-90)^5+108^5\)

\({\color{maroon}{7682419350}}=36^5+(-41)^5+95^5\)

\({\color{maroon}{7834592160}}=84^5+(-102)^5+108^5\)

\({\color{maroon}{7842951360}}=(-132)^5+(-162)^5+174^5\)

\({\color{maroon}{7863420951}}=(-24)^5+78^5+87^5\)

\({\color{maroon}{7945620318}}=(-12)^5+(-69)^5+99^5\)

\({\color{maroon}{7984236150}}=55^5+(-129)^5+134^5\)

\({\color{maroon}{8012475693}}=81^5+(-87)^5+99^5\)

\({\color{maroon}{8147653920}}=18^5+(-24)^5+96^5\)

\({\color{maroon}{8153694207}}=(-1)^5+(-8)^5+96^5\)

\({\color{maroon}{8153726490}}=(-3)^5+(-3)^5+96^5\)

\({\color{maroon}{8253941607}}=128^5+142^5+(-153)^5\)

\({\color{maroon}{8401297563}}=(-156)^5+(-213)^5+222^5\)

\({\color{maroon}{8436125907}}=(-8)^5+(-64)^5+99^5\)

\({\color{maroon}{8467093152}}=(-54)^5+(-64)^5+100^5\)

\({\color{maroon}{8602593174}}=51^5+(-66)^5+99^5\)

\({\color{maroon}{8602951743}}=(-1)^5+(-142)^5+146^5\)

\({\color{maroon}{8635107294}}=(-80)^5+(-107)^5+121^5\)

\({\color{maroon}{8723469150}}=60^5+(-69)^5+99^5\)

\({\color{maroon}{8932754601}}=(-45)^5+(-129)^5+135^5\)

\({\color{maroon}{9016482375}}=39^5+(-64)^5+100^5\)

\({\color{maroon}{9027385641}}=9^5+(-26)^5+98^5\)

\({\color{maroon}{9138064257}}=(-6)^5+56^5+97^5\)

\({\color{maroon}{9160745283}}=(-58)^5+(-210)^5+211^5\)

\({\color{maroon}{9204568317}}=18^5+(-115)^5+124^5\)

\({\color{maroon}{9275640318}}=(-37)^5+(-44)^5+99^5\)

\({\color{maroon}{9280716543}}=11^5+(-47)^5+99^5\)

\({\color{maroon}{9318027456}}=84^5+(-90)^5+102^5\)

\({\color{maroon}{9342508176}}=(-19)^5+(-44)^5+99^5\)

\({\color{maroon}{9365082174}}=83^5+(-181)^5+182^5\)

\({\color{maroon}{9410675832}}=(-1)^5+(-103)^5+116^5\)

\({\color{maroon}{9457032168}}=(-13)^5+53^5+98^5\)

\({\color{maroon}{9503467281}}=5^5+(-23)^5+99^5\)

\({\color{maroon}{9541073268}}=(-24)^5+33^5+99^5\)

\({\color{maroon}{9567014382}}=71^5+(-198)^5+199^5\)

\({\color{maroon}{9580176342}}=(-45)^5+48^5+99^5\)

\({\color{maroon}{9618240357}}=121^5+167^5+(-171)^5\)

\({\color{maroon}{9681243750}}=45^5+(-55)^5+100^5\)

\({\color{maroon}{9782134560}}=(-32)^5+(-176)^5+178^5\)

\({\color{maroon}{9783450612}}=(-54)^5+(-67)^5+103^5\)


Pandigital solutions with  FOUR  fifthpowers.
At the left the first few and last of  \(1022\)  solutions with positive terms (\(1\) pandigital has two solutions)
and at the right a batch of so many solutions with mixed signs terms with \(z\leqslant2000\).

\({\color{maroon}{1025783649}}=21^5+30^5+49^5+59^5\)

\({\color{maroon}{1027496835}}=16^5+42^5+51^5+56^5\)

\({\color{maroon}{1035467892}}=17^5+19^5+33^5+63^5\)

\({\color{maroon}{1037256849}}=44^5+45^5+45^5+55^5\)

\({\color{maroon}{1046935782}}=23^5+32^5+47^5+60^5\)

\({\color{maroon}{1047968523}}=19^5+33^5+39^5+62^5\)

\({\color{maroon}{1052938467}}=23^5+29^5+32^5+63^5\)

\({\color{maroon}{1067325498}}=19^5+40^5+54^5+55^5\)

\({\color{maroon}{1074923586}}=2^5+13^5+53^5+58^5\)

\({\color{maroon}{1075498362}}=14^5+42^5+47^5+59^5\)

\({\color{maroon}{1075684239}}=42^5+44^5+47^5+56^5\)

\({\color{maroon}{1075849632}}=26^5+34^5+40^5+62^5\)

\(\bbox[mintcream,3px,border:1px solid]{{\color{maroon}{1392508467}}\mathbf{\color{blue}{\;=\;}}3^5+28^5+54^5+62^5\mathbf{\color{blue}{\;=\;}}24^5+28^5+28^5+67^5}\)

Note that we have a multigrade here as
\(3+28+54+62\mathbf{\color{blue}{\;=\;}}147\mathbf{\color{blue}{\;=\;}}24+28+28+67\)

\({\color{maroon}{9765012348}}=9^5+12^5+48^5+99^5\)

\({\color{maroon}{9768314025}}=17^5+35^5+85^5+88^5\)

\({\color{maroon}{9784305126}}=48^5+62^5+75^5+91^5\)

\({\color{maroon}{9804612357}}=29^5+75^5+77^5+86^5\)

\({\color{maroon}{9805314267}}=1^5+33^5+84^5+89^5\)

\({\color{maroon}{9821506473}}=10^5+65^5+79^5+89^5\)

\({\color{maroon}{9842035761}}=43^5+55^5+68^5+95^5\)

\({\color{maroon}{9845627013}}=7^5+45^5+64^5+97^5\)

\({\color{maroon}{9846701523}}=4^5+30^5+50^5+99^5\)

\({\color{maroon}{9851037426}}=6^5+31^5+50^5+99^5\)

\({\color{maroon}{9852736014}}=37^5+57^5+80^5+90^5\)

\({\color{maroon}{9873562401}}=2^5+33^5+70^5+96^5\)

\({\color{blue}{123456789}}=v^5+w^5+x^5+y^5+z^5\)

\({\color{maroon}{1396752408}}=84^5+151^5+216^5+(-223)^5\)

\({\color{maroon}{1932640875}}=(-59)^5+(-167)^5+(-403)^5+404^5\)

\({\color{maroon}{1958047632}}=(-56)^5+(-83)^5+(-189)^5+190^5\)

\({\color{maroon}{2109574368}}=(-60)^5+78^5+889^5+(-889)^5\)

\({\color{maroon}{2983104576}}=400^5+(-494)^5+(-782)^5+792^5\)

\({\color{maroon}{3678419205}}=49^5+(-213)^5+(-220)^5+249^5\)

\({\color{maroon}{4198237056}}=(-276)^5+291^5+317^5+(-326)^5\)

\({\color{maroon}{4628517093}}=707^5+1128^5+1563^5+(-1625)^5\)

\({\color{maroon}{5793402186}}=(-241)^5+(-722)^5+(-1442)^5+1451^5\)

\({\color{maroon}{6204891375}}=267^5+(-528)^5+(-667)^5+703^5\)

\({\color{maroon}{6385701924}}=(-276)^5+(-433)^5+(-507)^5+550^5\)

\({\color{maroon}{8065713294}}=(-107)^5+238^5+297^5+(-314)^5\)

\({\color{maroon}{9186250743}}=153^5+(-297)^5+(-345)^5+372^5\)

\({\color{blue}{987654321}}=v^5+w^5+x^5+y^5+z^5\)



  Topic 8.1   [ August 24, 2025 ]
Nine- and pandigital's equal to the sum of five positive and/or negative fifthpowers. Building a longer and longer list of solutions.

Regarding the ninedigitals we know from Topic 4.5 that there is only one solution with five positive terms
so that when all these five terms are concatenated we get another nice ninedigital !

\(\Large{\bbox[lightyellow,5px,border:1px green solid]{{\color{blueviolet}{816725493}}={\color{green}{9}}^5+{\color{green}{17}}^5+{\color{green}{26}}^5+{\color{green}{43}}^5+{\color{green}{58}}^5~~\to~~{\color{green}{917264358}}~~\text{ is also ninedigital ! }}}\)

Case of ninedigitals Case of pandigitals

Firstly how many ninedigital solutions are there in general with five only positive terms ?
Here are already the first and last ten solutions from a total of  \(2246\)  :


\({\color{maroon}{123486957}}=1^5+4^5+19^5+22^5+41^5\)

\({\color{maroon}{123495687}}=7^5+22^5+24^5+24^5+40^5\)

\({\color{maroon}{123764895}}=12^5+28^5+28^5+31^5+36^5\)

\({\color{maroon}{123765489}}=15^5+21^5+27^5+27^5+39^5\)

\({\color{maroon}{123789564}}=2^5+5^5+6^5+32^5+39^5\)

\({\color{maroon}{123798564}}=1^5+5^5+7^5+32^5+39^5\)

\({\color{maroon}{123864597}}=9^5+19^5+19^5+31^5+39^5\)

\({\color{maroon}{124358697}}=4^5+4^5+14^5+24^5+41^5\)

\({\color{maroon}{124598376}}=9^5+18^5+31^5+32^5+36^5\)

\({\color{maroon}{124689357}}=2^5+19^5+27^5+31^5+38^5\)

Some ninedigitals can be expressed in two ways, some of which are multigrades.

The multigrades here happen when using exponent \(1\) & \(5\) and they sum up to equal values.

Only these three solutions exist.

\(\bbox[mintcream,3px,border:1px solid]{{\color{maroon}{617492358}}\mathbf{\color{blue}{\;=\;}}16^5+25^5+29^5+46^5+52^5\mathbf{\color{blue}{\;=\;}}21^5+21^5+27^5+49^5+50^5}\)

\(16+25+29+46+52\mathbf{\color{blue}{\;=\;}}168\mathbf{\color{blue}{\;=\;}}21+21+27+49+50\)

\(\bbox[mintcream,3px,border:1px solid]{{\color{maroon}{764251389}}\mathbf{\color{blue}{\;=\;}}16^5+32^5+44^5+45^5+52^5\mathbf{\color{blue}{\;=\;}}23^5+31^5+33^5+51^5+51^5}\)

\(16+32+44+45+52\mathbf{\color{blue}{\;=\;}}189\mathbf{\color{blue}{\;=\;}}23+31+33+51+51\)

\(\bbox[mintcream,3px,border:1px solid]{{\color{maroon}{895762143}}\mathbf{\color{blue}{\;=\;}}2^5+38^5+41^5+49^5+53^5\mathbf{\color{blue}{\;=\;}}13^5+29^5+37^5+48^5+56^5}\)

\(2+38+41+49+53\mathbf{\color{blue}{\;=\;}}183\mathbf{\color{blue}{\;=\;}}13+29+37+48+56\)

\({\color{maroon}{985327164}}=13^5+17^5+37^5+50^5+57^5\)

\({\color{maroon}{986275413}}=4^5+30^5+47^5+47^5+55^5\)

\({\color{maroon}{986354172}}=15^5+22^5+22^5+42^5+61^5\)

\({\color{maroon}{986527413}}=4^5+4^5+16^5+37^5+62^5\)

\({\color{maroon}{986542173}}=1^5+7^5+16^5+37^5+62^5\)

\({\color{maroon}{986713542}}=5^5+38^5+49^5+50^5+50^5\)

\({\color{maroon}{987362451}}=20^5+35^5+41^5+50^5+55^5\)

\({\color{maroon}{987562134}}=11^5+17^5+39^5+51^5+56^5\)

\({\color{maroon}{987615432}}=3^5+12^5+18^5+37^5+62^5\)

\({\color{maroon}{987623415}}=4^5+24^5+28^5+54^5+55^5\)



Secondly I would like you to start a list of solutions with ninedigitals equal to five mixed signs terms.
Of course, thousands of ninedigitals will pop up with a sum of five fifthpowers. Therefore I will make
a connecting list going up from the smallest found ninedigital and going down from the largest found
ninedigital. Special solutions with e.g. a rare beauty or an interesting twist may also be reported.

\({\color{blue}{123456789}}=v^5+w^5+x^5+y^5+z^5\)

\({\color{maroon}{123458976}}=(-84)^5+(-228)^5+276^5+314^5+(-332)^5\)

\({\color{maroon}{123459687}}=11^5+87^5+(-102)^5+(-187)^5+188^5\)

\({\color{maroon}{123459768}}=9^5+(-52)^5+(-164)^5+(-192)^5+207^5\)

\({\color{maroon}{123459876}}=(-214)^5+(-448)^5+532^5+553^5+(-597)^5\)

\({\color{maroon}{123468597}}=59^5+(-115)^5+(-451)^5+(-616)^5+640^5\)

\({\color{maroon}{123469587}}=824^5+1091^5+(-1114)^5+1138^5+(-1162)^5\)

\({\color{maroon}{123497856}}=(-121)^5+(-493)^5+503^5+670^5+(-673)^5\)

\({\color{maroon}{123568974}}=152^5+(-445)^5+(-461)^5+(-497)^5+585^5\)

\({\color{maroon}{123589467}}=24^5+30^5+124^5+276^5+(-277)^5\)

\({\color{maroon}{123648975}}=(-19)^5+30^5+67^5+94^5+(-97)^5\)

\({\color{maroon}{987621534}}=(-82)^5+(-176)^5+193^5+370^5+(-371)^5\)

\({\color{maroon}{987623451}}=(-320)^5+375^5+(-384)^5+(-445)^5+465^5\)

\({\color{maroon}{987624153}}=98^5+729^5+1308^5+1440^5+(-1592)^5\)

\({\color{maroon}{987625431}}=181^5+522^5+639^5+800^5+(-861)^5\)

\({\color{maroon}{987635142}}=80^5+(-89)^5+(-141)^5+(-171)^5+183^5\)

\({\color{maroon}{987641235}}=22^5+109^5+(-177)^5+(-422)^5+423^5\)

\({\color{maroon}{987651324}}=(-106)^5+164^5+241^5+251^5+(-286)^5\)

\({\color{maroon}{987652413}}=(-130)^5+(-814)^5+(-1004)^5+(-1427)^5+1488^5\)

\({\color{maroon}{987653142}}=143^5+295^5+(-352)^5+(-436)^5+452^5\)

\({\color{maroon}{987654231}}=(-228)^5+(-266)^5+311^5+420^5+(-426)^5\)

\({\color{blue}{987654321}}=v^5+w^5+x^5+y^5+z^5\)

 

Firstly how many pandigital solutions are there in general with five only positive terms ?
Here are already the first and last ten solutions from a total of  \(19183\)  :


\({\color{maroon}{1023459867}}=4^5+13^5+20^5+53^5+57^5\)

\({\color{maroon}{1023469587}}=13^5+28^5+34^5+41^5+61^5\)

\({\color{maroon}{1023469587}}=15^5+18^5+21^5+30^5+63^5\)

\({\color{maroon}{1023479568}}=14^5+16^5+29^5+51^5+58^5\)

\({\color{maroon}{1023685497}}=9^5+9^5+28^5+39^5+62^5\)

\({\color{maroon}{1023846957}}=2^5+15^5+20^5+53^5+57^5\)

\({\color{maroon}{1023897456}}=2^5+3^5+45^5+52^5+54^5\)

\({\color{maroon}{1024536789}}=34^5+37^5+45^5+51^5+52^5\)

\({\color{maroon}{1024539867}}=30^5+38^5+39^5+41^5+59^5\)

\({\color{maroon}{1024576389}}=16^5+24^5+45^5+47^5+57^5\)

Some pandigitals can be expressed in two ways, some of which are multigrades.

The multigrades here happen when using exponent \(1\) & \(5\) and they sum up to equal values.

Three examples from the collection.

\(\bbox[gold,3px,border:1px solid]{{\color{maroon}{1243879506}}\mathbf{\color{blue}{\;=\;}}5^5+24^5+47^5+55^5+55^5\mathbf{\color{blue}{\;=\;}}9^5+27^5+40^5+49^5+61^5}\)

\(5+24+47+55+55\mathbf{\color{blue}{\;=\;}}186\mathbf{\color{blue}{\;=\;}}9+27+40+49+61\)

\(\bbox[gold,3px,border:1px solid]{{\color{maroon}{5062178349}}\mathbf{\color{blue}{\;=\;}}2^5+12^5+63^5+63^5+79^5\mathbf{\color{blue}{\;=\;}}20^5+24^5+30^5+61^5+84^5}\)

\(2+12+63+63+79\mathbf{\color{blue}{\;=\;}}219\mathbf{\color{blue}{\;=\;}}20+24+30+61+84\)

\(\bbox[gold,3px,border:1px solid]{{\color{maroon}{8932546107}}\mathbf{\color{blue}{\;=\;}}4^5+43^5+61^5+67^5+92^5\mathbf{\color{blue}{\;=\;}}12^5+21^5+75^5+75^5+84^5}\)

\(4+43+61+67+92\mathbf{\color{blue}{\;=\;}}267\mathbf{\color{blue}{\;=\;}}12+21+75+75+84\)


Note that when the equations of the multigrades are not equal then the difference
of the sums of the base terms are multiples of \(30\) !
Here is an example with \(3*30=90\) with pandigital \(5986421307\) and
\(14^1+21^1+22^1+63^1+87^1=207\) minus
\(40^1+51^1+54^1+75^1+77^1=297\) which gives a difference of \(90\).
Can someone explain this observation mathematically ?

\({\color{maroon}{9875034126}}=1^5+51^5+54^5+81^5+89^5\)

\({\color{maroon}{9875064123}}=14^5+22^5+74^5+75^5+88^5\)

\({\color{maroon}{9875103426}}=1^5+1^5+14^5+76^5+94^5\)

\({\color{maroon}{9875134026}}=26^5+43^5+72^5+79^5+86^5\)

\({\color{maroon}{9875423601}}=30^5+38^5+52^5+81^5+90^5\)

\({\color{maroon}{9875642310}}=6^5+39^5+63^5+68^5+94^5\)

\({\color{maroon}{9876153024}}=4^5+14^5+16^5+76^5+94^5\)

\({\color{maroon}{9876204315}}=17^5+22^5+46^5+77^5+93^5\)

\({\color{maroon}{9876341025}}=30^5+48^5+54^5+56^5+97^5\)

\({\color{maroon}{9876531024}}=7^5+9^5+18^5+76^5+94^5\)



Secondly I would like you to start a list of solutions with pandigitals equal to five mixed signs terms.
Of course, thousands of pandigitals will pop up with a sum of five fifthpowers. Therefore I will make
a connecting list going up from the smallest found pandigital and going down from the largest found
pandigital. Special solutions with e.g. a rare beauty or an interesting twist may also be reported.


\({\color{blue}{1023456789}}=v^5+w^5+x^5+y^5+z^5\)

\({\color{maroon}{1023459768}}=(-51)^5+75^5+203^5+206^5+(-235)^5\)

\({\color{maroon}{1023476598}}=(-186)^5+(-401)^5+554^5+976^5+(-985)^5\)

\({\color{maroon}{1023479568}}=59^5+80^5+(-190)^5+(-267)^5+276^5\)

\({\color{maroon}{1023486957}}=(-181)^5+191^5+241^5+327^5+(-341)^5\)

\({\color{maroon}{1023495876}}=(-620)^5+1056^5+(-1215)^5+(-1268)^5+1363^5\)

\({\color{maroon}{1023497658}}=(-174)^5+(-1043)^5+1165^5+1188^5+(-1268)^5\)

\({\color{maroon}{1023568974}}=13^5+785^5+1130^5+1744^5+(-1788)^5\)

\({\color{maroon}{1023645798}}=(-1126)^5+1260^5+(-1273)^5+(-1332)^5+1439^5\)

\({\color{maroon}{1023694587}}=(-46)^5+(-210)^5+267^5+334^5+(-348)^5\)

\({\color{maroon}{1023758649}}=(-2)^5+(-56)^5+(-283)^5+(-357)^5+377^5\)

\({\color{maroon}{4768523109}}=6061^5+10665^5+10920^5+11786^5+(-13953)^5\)

\({\color{maroon}{9876203415}}=430^5+(-713)^5+850^5+1456^5+(-1468)^5\)

\({\color{maroon}{9876204315}}=(-69)^5+(-373)^5+549^5+1436^5+(-1438)^5\)

\({\color{maroon}{9876450123}}=22^5+382^5+411^5+1186^5+(-1188)^5\)

\({\color{maroon}{9876451230}}=525^5+(-566)^5+(-588)^5+(-710)^5+769^5\)

\({\color{maroon}{9876502314}}=340^5+492^5+(-573)^5+(-617)^5+652^5\)

\({\color{maroon}{9876520413}}=122^5+(-146)^5+652^5+781^5+(-836)^5\)

\({\color{maroon}{9876524031}}=372^5+(-1431)^5+1501^5+1784^5+(-1815)^5\)

\({\color{maroon}{9876530124}}=(-185)^5+(-267)^5+450^5+544^5+(-578)^5\)

\({\color{maroon}{9876540321}}=(-479)^5+(-664)^5+(-1202)^5+(-1534)^5+1620^5\)

\({\color{maroon}{9876541320}}=-19^5+72^5+(-768)^5+(-1323)^5+1340^5\)

\({\color{maroon}{9876542301}}=(-180)^5+(-219)^5+324^5+381^5+(-405)^5\)

\({\color{blue}{9876543210}}=v^5+w^5+x^5+y^5+z^5\)




Contributions









[up TOP OF PAGE]


( © All rights reserved ) - Last modified : September 12, 2025.
Patrick De Geest - Belgium flag - Short Bio - Some Pictures
E-mail address : pdg@worldofnumbers.com