World!Of Numbers | ![]() |
||
![]() with some Ten Digits (pandigital) exceptions | |||
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
When I use the term ninedigital in these articles I always refer to a strictly zeroless pandigital (digits from 1 to 9 each appearing just once).
Topic 8.2 [ August 24, 2025 ]
Nine- and pandigital's equal to the sum of two, three and four positive and/or negative fifthpowers.
Case of ninedigitals | Case of pandigitals | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
One beautiful solution with only TWO fifthpowers ! \(\Large{\bbox[lightyellow,5px, border:1px green solid]{{\color{blue}{312496875}}={\color{purple}{50^5-5^5}}}}\) Ninedigital solutions with THREE fifthpowers. Here is a complete list, one column with positive terms and another with
Ninedigital solutions with FOUR fifthpowers.
|
One beautiful solution with only TWO fifthpowers ! \(\Large{\bbox[mintcream,5px, border:1px green solid]{{\color{blue}{2109574368}}={\color{purple}{78^5-60^5}}}}\) Pandigital solutions with THREE fifthpowers. Here is a complete list, one column with positive terms and another with
Pandigital solutions with FOUR fifthpowers.
|
Topic 8.1 [ August 24, 2025 ]
Nine- and pandigital's equal to the sum of five positive and/or negative fifthpowers. Building a longer and longer list of solutions.
Regarding the ninedigitals we know from Topic 4.5 that there is only one solution with five positive terms
so that when all these five terms are concatenated we get another nice ninedigital !
\(\Large{\bbox[lightyellow,5px,border:1px green solid]{{\color{blueviolet}{816725493}}={\color{green}{9}}^5+{\color{green}{17}}^5+{\color{green}{26}}^5+{\color{green}{43}}^5+{\color{green}{58}}^5~~\to~~{\color{green}{917264358}}~~\text{ is also ninedigital ! }}}\)
Case of ninedigitals | Case of pandigitals | |
---|---|---|
Firstly how many ninedigital solutions are there in general with five only positive terms ? \({\color{maroon}{123486957}}=1^5+4^5+19^5+22^5+41^5\) \({\color{maroon}{123495687}}=7^5+22^5+24^5+24^5+40^5\) \({\color{maroon}{123764895}}=12^5+28^5+28^5+31^5+36^5\) \({\color{maroon}{123765489}}=15^5+21^5+27^5+27^5+39^5\) \({\color{maroon}{123789564}}=2^5+5^5+6^5+32^5+39^5\) \({\color{maroon}{123798564}}=1^5+5^5+7^5+32^5+39^5\) \({\color{maroon}{123864597}}=9^5+19^5+19^5+31^5+39^5\) \({\color{maroon}{124358697}}=4^5+4^5+14^5+24^5+41^5\) \({\color{maroon}{124598376}}=9^5+18^5+31^5+32^5+36^5\) \({\color{maroon}{124689357}}=2^5+19^5+27^5+31^5+38^5\) ⋮ Some ninedigitals can be expressed in two ways, some of which are multigrades. The multigrades here happen when using exponent \(1\) & \(5\) and they sum up to equal values. \(\bbox[mintcream,3px,border:1px solid]{{\color{maroon}{617492358}}\mathbf{\color{blue}{\;=\;}}16^5+25^5+29^5+46^5+52^5\mathbf{\color{blue}{\;=\;}}21^5+21^5+27^5+49^5+50^5}\) \(16+25+29+46+52\mathbf{\color{blue}{\;=\;}}168\mathbf{\color{blue}{\;=\;}}21+21+27+49+50\) \(\bbox[mintcream,3px,border:1px solid]{{\color{maroon}{764251389}}\mathbf{\color{blue}{\;=\;}}16^5+32^5+44^5+45^5+52^5\mathbf{\color{blue}{\;=\;}}23^5+31^5+33^5+51^5+51^5}\) \(16+32+44+45+52\mathbf{\color{blue}{\;=\;}}189\mathbf{\color{blue}{\;=\;}}23+31+33+51+51\) \(\bbox[mintcream,3px,border:1px solid]{{\color{maroon}{895762143}}\mathbf{\color{blue}{\;=\;}}2^5+38^5+41^5+49^5+53^5\mathbf{\color{blue}{\;=\;}}13^5+29^5+37^5+48^5+56^5}\) \(2+38+41+49+53\mathbf{\color{blue}{\;=\;}}183\mathbf{\color{blue}{\;=\;}}13+29+37+48+56\) ⋮ \({\color{maroon}{985327164}}=13^5+17^5+37^5+50^5+57^5\) \({\color{maroon}{986275413}}=4^5+30^5+47^5+47^5+55^5\) \({\color{maroon}{986354172}}=15^5+22^5+22^5+42^5+61^5\) \({\color{maroon}{986527413}}=4^5+4^5+16^5+37^5+62^5\) \({\color{maroon}{986542173}}=1^5+7^5+16^5+37^5+62^5\) \({\color{maroon}{986713542}}=5^5+38^5+49^5+50^5+50^5\) \({\color{maroon}{987362451}}=20^5+35^5+41^5+50^5+55^5\) \({\color{maroon}{987562134}}=11^5+17^5+39^5+51^5+56^5\) \({\color{maroon}{987615432}}=3^5+12^5+18^5+37^5+62^5\) \({\color{maroon}{987623415}}=4^5+24^5+28^5+54^5+55^5\) Secondly I would like you to start a list of solutions with ninedigitals equal to five mixed signs terms. \({\color{blue}{123456789}}=v^5+w^5+x^5+y^5+z^5\) \({\color{maroon}{123458976}}=(-84)^5+(-228)^5+276^5+314^5+(-332)^5\) \({\color{maroon}{123459687}}=11^5+87^5+(-102)^5+(-187)^5+188^5\) \({\color{maroon}{123459876}}=(-214)^5+(-448)^5+532^5+553^5+(-597)^5\) \({\color{maroon}{123469587}}=824^5+1091^5+(-1114)^5+1138^5+(-1162)^5\) \({\color{maroon}{123497856}}=(-121)^5+(-493)^5+503^5+670^5+(-673)^5\) \({\color{maroon}{123568974}}=152^5+(-445)^5+(-461)^5+(-497)^5+585^5\) \({\color{maroon}{123589467}}=24^5+30^5+124^5+276^5+(-277)^5\) \({\color{maroon}{123648975}}=(-19)^5+30^5+67^5+94^5+(-97)^5\) \({\color{maroon}{123769458}}=71^5+(-476)^5+490^5+571^5+(-578)^5\) \({\color{maroon}{123954876}}=(-29)^5+(-68)^5+(-87)^5+(-102)^5+112^5\) ⋮ \({\color{maroon}{986251374}}=253^5+494^5+1025^5+1095^5+(-1223)^5\) \({\color{maroon}{987154632}}=55^5+217^5+(-239)^5+(-281)^5+290^5\) \({\color{maroon}{987241563}}=12^5+(-71)^5+(-93)^5+(-138)^5+143^5\) \({\color{maroon}{987516432}}=(-73)^5+101^5+(-199)^5+(-376)^5+379^5\) \({\color{maroon}{987531624}}=(-195)^5+203^5+(-330)^5+(-336)^5+382^5\) \({\color{maroon}{987621534}}=(-82)^5+(-176)^5+193^5+370^5+(-371)^5\) \({\color{maroon}{987624153}}=98^5+729^5+1308^5+1440^5+(-1592)^5\) \({\color{maroon}{987653142}}=143^5+295^5+(-352)^5+(-436)^5+452^5\) \({\color{maroon}{987654231}}=(-228)^5+(-266)^5+311^5+420^5+(-426)^5\) \({\color{blue}{987654321}}=v^5+w^5+x^5+y^5+z^5\) |
Firstly how many pandigital solutions are there in general with five only positive terms ? \({\color{maroon}{1023459867}}=4^5+13^5+20^5+53^5+57^5\) \({\color{maroon}{1023469587}}=13^5+28^5+34^5+41^5+61^5\) \({\color{maroon}{1023469587}}=15^5+18^5+21^5+30^5+63^5\) \({\color{maroon}{1023479568}}=14^5+16^5+29^5+51^5+58^5\) \({\color{maroon}{1023685497}}=9^5+9^5+28^5+39^5+62^5\) \({\color{maroon}{1023846957}}=2^5+15^5+20^5+53^5+57^5\) \({\color{maroon}{1023897456}}=2^5+3^5+45^5+52^5+54^5\) \({\color{maroon}{1024536789}}=34^5+37^5+45^5+51^5+52^5\) \({\color{maroon}{1024539867}}=30^5+38^5+39^5+41^5+59^5\) \({\color{maroon}{1024576389}}=16^5+24^5+45^5+47^5+57^5\) ⋮ Some pandigitals can be expressed in two ways, some of which are multigrades. The multigrades here happen when using exponent \(1\) & \(5\) and they sum up to equal values. \(\bbox[gold,3px,border:1px solid]{{\color{maroon}{1243879506}}\mathbf{\color{blue}{\;=\;}}5^5+24^5+47^5+55^5+55^5\mathbf{\color{blue}{\;=\;}}9^5+27^5+40^5+49^5+61^5}\) \(5+24+47+55+55\mathbf{\color{blue}{\;=\;}}186\mathbf{\color{blue}{\;=\;}}9+27+40+49+61\) \(\bbox[gold,3px,border:1px solid]{{\color{maroon}{5062178349}}\mathbf{\color{blue}{\;=\;}}2^5+12^5+63^5+63^5+79^5\mathbf{\color{blue}{\;=\;}}20^5+24^5+30^5+61^5+84^5}\) \(2+12+63+63+79\mathbf{\color{blue}{\;=\;}}219\mathbf{\color{blue}{\;=\;}}20+24+30+61+84\) \(\bbox[gold,3px,border:1px solid]{{\color{maroon}{8932546107}}\mathbf{\color{blue}{\;=\;}}4^5+43^5+61^5+67^5+92^5\mathbf{\color{blue}{\;=\;}}12^5+21^5+75^5+75^5+84^5}\) \(4+43+61+67+92\mathbf{\color{blue}{\;=\;}}267\mathbf{\color{blue}{\;=\;}}12+21+75+75+84\) Note that when the equations of the multigrades are not equal then the difference of the sums of the base terms are multiples of \(30\) ! Here is an example with \(3*30=90\) with pandigital \(5986421307\) and \(14^1+21^1+22^1+63^1+87^1=207\) minus \(40^1+51^1+54^1+75^1+77^1=297\) which gives a difference of \(90\). Can someone explain this observation mathematically ? ⋮ \({\color{maroon}{9875034126}}=1^5+51^5+54^5+81^5+89^5\) \({\color{maroon}{9875064123}}=14^5+22^5+74^5+75^5+88^5\) \({\color{maroon}{9875103426}}=1^5+1^5+14^5+76^5+94^5\) \({\color{maroon}{9875134026}}=26^5+43^5+72^5+79^5+86^5\) \({\color{maroon}{9875423601}}=30^5+38^5+52^5+81^5+90^5\) \({\color{maroon}{9875642310}}=6^5+39^5+63^5+68^5+94^5\) \({\color{maroon}{9876153024}}=4^5+14^5+16^5+76^5+94^5\) \({\color{maroon}{9876204315}}=17^5+22^5+46^5+77^5+93^5\) \({\color{maroon}{9876341025}}=30^5+48^5+54^5+56^5+97^5\) \({\color{maroon}{9876531024}}=7^5+9^5+18^5+76^5+94^5\) Secondly I would like you to start a list of solutions with pandigitals equal to five mixed signs terms. \({\color{blue}{1023456789}}=v^5+w^5+x^5+y^5+z^5\) \({\color{maroon}{1023459768}}=(-51)^5+75^5+203^5+206^5+(-235)^5\) \({\color{maroon}{1023568974}}=13^5+785^5+1130^5+1744^5+(-1788)^5\) \({\color{maroon}{1023645798}}=(-1126)^5+1260^5+(-1273)^5+(-1332)^5+1439^5\) \({\color{maroon}{1023694587}}=(-46)^5+(-210)^5+267^5+334^5+(-348)^5\) ⋮ \({\color{maroon}{4768523109}}=6061^5+10665^5+10920^5+11786^5+(-13953)^5\) ⋮ \({\color{maroon}{9876203415}}=430^5+(-713)^5+850^5+1456^5+(-1468)^5\) \({\color{maroon}{9876204315}}=(-69)^5+(-373)^5+549^5+1436^5+(-1438)^5\) \({\color{maroon}{9876451230}}=525^5+(-566)^5+(-588)^5+(-710)^5+769^5\) \({\color{maroon}{9876502314}}=340^5+492^5+(-573)^5+(-617)^5+652^5\) \({\color{maroon}{9876541320}}=-19^5+72^5+(-768)^5+(-1323)^5+1340^5\) \({\color{maroon}{9876542301}}=(-180)^5+(-219)^5+324^5+381^5+(-405)^5\) \({\color{blue}{9876543210}}=v^5+w^5+x^5+y^5+z^5\) |
[ TOP OF PAGE]