World!Of
Numbers
HOME plate
WON |
Near Smoothly Undulating
Primes (NSUP's)
  (with 6-digit undulators)
rood  1  rood  2  rood  3  rood  4  rood  5  rood  6  rood
rood Near Smoothly Undulating Primes NSUP's (with 22-digit undulators) rood
rood Undulating Palindromic Primes rood Palindromic Wing Primes rood
rood Plateau & Depression Palindromic Primes rood Palindromic Merlon Primes rood
rood Home Primes rood Circular Primes rood SUPP-sorted



NSUP” Prime Projects


Hereunder at the left you'll find the table with files containing the primefactors of the SUPP's (Smoothly Undulating Palindromic Primes).
At the right you'll find the corresponding 6-digit NSUP's.

Case [k](d1d2d3d4d5d6)u = [prefix](6-digit undulator).
Attentive readers of the factor lists will have noticed with me that some SUPP primefactors are themselves near smoothly undulating. 'Near' because of an initial prefix and the repeating 6-digit undulators.
We divide therefore the SUPP by primefactor 3 (see table 'Mark 3') or 7 (see table 'Mark 7').

SUPP (Smoothly Undulating Prime Palindromes) reference files
1(01)w = (10*10n–1)/99 Factorization of Repunits (M. Kamada)
1(21)w = (12*10n–21)/99 Factorization of 133...331 (M. Kamada)
1(31)w = (13*10n–31)/99 Factorization of 144...441 (M. Kamada)
1(41)w = (14*10n–41)/99 Factorization of 155...551 (M. Kamada)
1(51)w = (15*10n–51)/99 Factorization of 166...661 (M. Kamada)
1(61)w = (16*10n–61)/99 Factorization of 177...771 (M. Kamada)
1(71)w = (17*10n–71)/99 Factorization of 188...881 (M. Kamada)
1(81)w = (18*10n–81)/99 Factorization of 199...991 (M. Kamada)
1(91)w = (19*10n–91)/99 facsupp191.htm (by P. De Geest).
 
3(13)w = (31*10n–13)/99 Factorization of 344...443 (M. Kamada)
3(23)w = (32*10n–23)/99 Factorization of 355...553 (M. Kamada)
3(43)w = (34*10n–43)/99 Factorization of 377...773 (M. Kamada)
3(53)w = (35*10n–53)/99 Factorization of 388...883 (M. Kamada)
3(73)w = (37*10n–73)/99 facsupp373.htm (by P. De Geest).
3(83)w = (38*10n–83)/99 facsupp383.htm (by P. De Geest).
 
7(17)w = (71*10n–17)/99 Factorization of 788...887 (M. Kamada)
7(27)w = (72*10n–27)/99 Factorization of 799...997 (M. Kamada)
7(37)w = (73*10n–37)/99 facsupp737.htm (by P. De Geest).
7(47)w = (74*10n–47)/99 facsupp747.htm (by P. De Geest).
7(57)w = (75*10n–57)/99 facsupp757.htm (by P. De Geest).
7(87)w = (78*10n–87)/99 facsupp787.htm (by P. De Geest).
7(97)w = (79*10n–97)/99 facsupp797.htm (by P. De Geest).
 
9(19)w = (91*10n–19)/99 facsupp919.htm (by P. De Geest).
9(29)w = (92*10n–29)/99 facsupp929.htm (by P. De Geest).
9(49)w = (94*10n–49)/99 facsupp949.htm (by P. De Geest).
9(59)w = (95*10n–59)/99 facsupp959.htm (by P. De Geest).
9(79)w = (97*10n–79)/99 facsupp979.htm (by P. De Geest).
9(89)w = (98*10n–89)/99 facsupp989.htm (by P. De Geest).
[k](d1d2d3d4d5d6)n = NSUP's (Near Smoothly Undulating Primes)  Mark 3  
1(01)w Always Composite (Steps 3w are divisible by 37)
1(21)w not divisible by 3 !
1(31)w / 3 (13*10n–31)/(99*3) = [4377](104377)uStep 6w + 5Link
1(41)w / 3 (14*10n–41)/(99*3) = [47](138047)uStep 6w + 3Link
1(51)w not divisible by 3 !
1(61)w / 3 (16*10n–61)/(99*3) = [5387](205387)uStep 6w + 5Link
1(71)w / 3 (17*10n–71)/(99*3) = [57](239057)uStep 6w + 3Link
1(81)w not divisible by 3 !
1(91)w / 3 (19*10n–91)/(99*3) = [6397](306397)uStep 6w + 5Link
 
3(13)w / 3 (31*10n–13)/(99*3) = [1](043771)uStep 6w + 1Link
3(23)w / 3 (32*10n–23)/(99*3) = [1](077441)uStep 6w + 1Link
3(43)w / 3 (34*10n–43)/(99*3) = [1](144781)uStep 6w + 1Link
3(53)w / 3 (35*10n–53)/(99*3) = [1](178451)uStep 6w + 1Link
3(73)w / 3 (37*10n–73)/(99*3) = [1](245791)uStep 6w + 1Link
3(83)w / 3 (38*10n–83)/(99*3) = [1](279461)uStep 6w + 1Link
 
7(17)w / 3 (71*10n–17)/(99*3) = [239](057239)uStep 6w + 3Link
7(27)w / 3 not divisible by 3 !
7(37)w / 3 (73*10n–37)/(99*3) = [24579](124579)uStep 6w + 5Link
7(47)w / 3 (74*10n–47)/(99*3) = [249](158249)uStep 6w + 3Link
7(57)w not divisible by 3 !
7(87)w not divisible by 3 !
7(97)w / 3 (79*10n–97)/(99*3) = [26599](326599)uStep 6w + 5Link
 
9(19)w / 3 (91*10n–19)/(99*3) = [3](063973)uStep 6w + 1Link
9(29)w / 3 (92*10n–29)/(99*3) = [3](097643)uStep 6w + 1Link
9(49)w / 3 (94*10n–49)/(99*3) = [3](164983)uStep 6w + 1Link
9(59)w / 3 (95*10n–59)/(99*3) = [3](198653)uStep 6w + 1Link
9(79)w / 3 (97*10n–79)/(99*3) = [3](265993)uStep 6w + 1Link
9(89)w / 3 (98*10n–89)/(99*3) = [3](299663)uStep 6w + 1Link
[k](d1d2d3d4d5d6)n = NSUP's (Near Smoothly Undulating Primes)  Mark 7  
1(01)w Always Composite (Steps 6w always divisible by 37)
1(21)w not divisible by 7 !
1(31)w not divisible by 7 !
1(41)w not divisible by 7 !
1(51)w not divisible by 7 !
1(61)w / 7 (16*10n–61)/(99*7) = [23](088023)uStep 6w + 3Link
1(71)w / 7 (17*10n–71)/(99*7) = [2453](102453)uStep 6w + 5Link
1(81)w not divisible by 7 !
1(91)w not divisible by 7 !
 
3(13)w not divisible by 7 !
3(23)w not divisible by 7 !
3(43)w / 7 (34*10n–43)/(99*7) = [49](062049)uStep 6w + 3Link
3(53)w not divisible by 7 !
3(73)w / 7 (37*10n–73)/(99*3) = [5339](105339)uStep 6w + 5Link
3(83)w not divisible by 7 !
 
7(17)w / 7 (71*10n–17)/(99*7) = [1](024531)uStep 6w + 1Link
7(27)w / 7 (72*10n–27)/(99*7) = [1](038961)uStep 6w + 1Link
7(37)w / 7 (73*10n–37)/(99*7) = [1](053391)uStep 6w + 1Link
7(47)w / 7 (74*10n–47)/(99*7) = [1](067821)uStep 6w + 1Link
7(57)w / 7 (75*10n–57)/(99*7) = [1](082251)uStep 6w + 1Link
7(87)w / 7 (78*10n–87)/(99*7) = [1](125541)uStep 6w + 1Link
7(97)w / 7 (79*10n–97)/(99*7) = [1](139971)uStep 6w + 1Link
 
9(19)w not divisible by 7 !
9(29)w not divisible by 7 !
9(49)w not divisible by 7 !
9(59)w / 7 (95*10n–59)/(99*7) = [137](085137)uStep 6w + 3Link
9(79)w / 7 (97*10n–79)/(99*7) = [13997](113997)uStep 6w + 5Link
9(89)w not divisible by 7 !


Hereunder at the left you'll find the table with the files containing the primefactors of the SUP's (Smoothly Undulating Palindromes).
At the right you'll find the corresponding 6-digit NSUP's.

Case [k](d1d2d3d4d5d6)u = [prefix](6-digit undulator).
Attentive readers of the factor lists will have noticed with me that some SUP primefactors are themselves near smoothly undulating. 'Near' because of an initial prefix and the repeating 6-digit undulators.
We divide therefore the SUP by a power of 2 or a power of 5 and the primefactor 3 (see table 'Mark 3').

SUP (Smoothly Undulating Composite Palindromes) reference files
 
2(12)w = (21*10n–12)/99 facsup212.htm (by P. De Geest).
2(32)w = (23*10n–32)/99 facsup232.htm (by P. De Geest).
2(52)w = (25*10n–52)/99 facsup252.htm (by P. De Geest).
2(72)w = (27*10n–72)/99 facsup272.htm (by P. De Geest).
2(92)w = (29*10n–92)/99 facsup292.htm (by P. De Geest).
 
4(14)w = (41*10n–14)/99 facsup414.htm (by P. De Geest).
4(34)w = (43*10n–34)/99 facsup434.htm (by P. De Geest).
4(54)w = (45*10n–54)/99 facsup454.htm (by P. De Geest).
4(74)w = (47*10n–74)/99 facsup474.htm (by P. De Geest).
4(94)w = (49*10n–94)/99 facsup494.htm (by P. De Geest).
 
5(15)w = (51*10n–15)/99 facsup515.htm (by P. De Geest).
5(25)w = (52*10n–25)/99 facsup525.htm (by P. De Geest).
5(35)w = (53*10n–35)/99 facsup535.htm (by P. De Geest).
5(45)w = (54*10n–45)/99 facsup545.htm (by P. De Geest).
5(65)w = (56*10n–65)/99 facsup565.htm (by P. De Geest).
5(75)w = (57*10n–75)/99 facsup575.htm (by P. De Geest).
5(85)w = (58*10n–85)/99 facsup585.htm (by P. De Geest).
5(95)w = (59*10n–95)/99 facsup595.htm (by P. De Geest).
 
6(16)w = (61*10n–16)/99 facsup616.htm (by P. De Geest).
6(56)w = (65*10n–56)/99 facsup656.htm (by P. De Geest).
6(76)w = (67*10n–76)/99 facsup676.htm (by P. De Geest).
 
7(67)w = (76*10n–67)/99 facsup767.htm (by P. De Geest).
 
8(18)w = (81*10n–18)/99 facsup818.htm (by P. De Geest).
8(38)w = (83*10n–38)/99 facsup838.htm (by P. De Geest).
8(58)w = (85*10n–58)/99 facsup858.htm (by P. De Geest).
8(78)w = (87*10n–78)/99 facsup878.htm (by P. De Geest).
8(98)w = (89*10n–98)/99 facsup898.htm (by P. De Geest).
[k](d1d2d3d4d5d6)n = NSUP's (Near Smoothly Undulating Primes)  Mark 3  
 
2(12)w not divisible by 3 !
2(32)w / 25 / 3 (23*10n–32)/(99*32*3) = [242](003367)uStep 6w + 5Link
2(52)w Always Composite (Steps 6w + 3 always divisible by 7)
2(72)w not divisible by 3 !
2(92)w / 22 / 3 (29*10n–92)/(99*4*3) = [2441](077441)uStep 6w + 5Link
 
4(14)w / 2 / 3 (41*10n–14)/(99*2*3) = [69](023569)uStep 6w + 3Link
4(34)w / 2 / 3 (43*10n–34)/(99*2*3) = [7239](057239)uStep 6w + 5Link
4(54)w not divisible by 3 !
4(74)w / 2 / 3 (47*10n–74)/(99*2*3) = [79](124579)uStep 6w + 3Link
4(94)w / 2 / 3 (49*10n–94)/(99*2*3) = [8249](158249)uStep 6w + 5Link
 
5(15)w not divisible by 3 !
5(25)w Always Composite (Steps 6w + 3 always divisible by 7)
5(35)w / 5 / 3 (53*10n–35)/(99*5*3) = [3569](023569)uStep 6w + 5Link
5(45)w not divisible by 3 !
5(65)w / 5 / 3 (56*10n–65)/(99*5*3) = [3771](043771)uStep 6w + 5Link
5(75)w not divisible by 3 !
5(85)w Always Composite (Steps 6w + 3 always divisible by 13)
5(95)w / 5 / 3 (59*10n–95)/(99*5*3) = [3973](063973)uStep 6w + 5Link
 
6(16)w / 24 / 3 (61*10n–16)/(99*16*3) = [128367](003367)uStep 6w + 1Link
6(56)w / 23 / 3 (65*10n–56)/(99*8*3) = [273569](023569)uStep 6w + 1Link
6(76)w / 22 / 3 (67*10n–76)/(99*4*3) = [563973](063973)uStep 6w + 1Link
 
7(67)w / 3 (76*10n–67)/(99*3) = [25589](225589)uStep 6w + 5Link
 
8(18)w not divisible by 3 !
8(38)w / 2 / 3 (83*10n–38)/(99*2*3) = [13973](063973)uStep 6w + 5Link
8(58)w Always Composite (Steps 6w + 3 always divisible by 13)
8(78)w not divisible by 3 !
8(98)w / 2 / 3 (89*10n–98)/(99*2*3) = [14983](164983)uStep 6w + 5Link
[k](d1d2d3d4d5d6)n = NSUP's (Near Smoothly Undulating Primes)  Mark 7  
 
2(12)w not divisible by 7 !
2(32)w not divisible by 7 !
2(52)w / 22 / 3 / 7 (25*10n–52)/(99*4*3*7) = [3](006253)uStep 6w + 3Link
2(72)w / 23 / 7 (27*10n–72)/(99*8*7) = [487](012987)uStep 6w + 5Link
2(92)w not divisible by 7 !
 
4(14)w not divisible by 7 !
4(34)w / 2 / 7 (43*10n–34)/(99*2*7) = [31](024531)uStep 6w + 3Link
4(54)w not divisible by 7 !
4(74)w / 2 / 7 (47*10n–74)/(99*2*7) = [3391](053391)uStep 6w + 5Link
4(94)w not divisible by 7 !
 
5(15)w not divisible by 7 !
5(25)w / 3 / 52 / 7 (52*10n–25)/(99*25*3*7) = [1](000481)uStep 6w + 3Link
5(35)w not divisible by 7 !
5(45)w not divisible by 7 !
5(65)w not divisible by 7 !
5(75)w / 52 / 7 (57*10n–75)/(99*25*7) = [329](004329)uStep 6w + 5Link
5(85)w not divisible by 7 !
5(95)w / 5 / 7 (59*10n–95)/(99*5*7) = [17](027417)uStep 6w + 3Link
 
6(16)w / 24 / 7 (61*10n–16)/(99*16*7) = [5501443](001443)uStep 6w + 9Link
6(56)w not divisible by 7 !
6(76)w / 22 / 7 (67*10n–76)/(99*4*7) = [2417](027417)uStep 6w + 5Link
 
7(67)w / 7 (76*10n–67)/(99*7) = [1](096681)uStep 6w + 1Link
 
8(18)w not divisible by 7 !
8(38)w not divisible by 7 !
8(58)w not divisible by 7 !
8(78)w / 2 / 7 (87*10n–78)/(99*2*7) = [6277](056277)uStep 6w + 5Link
8(98)w not divisible by 7 !


Case [k](d1d2d3d4d5d6)u = [prefix](6-digit undulator).
Attentive readers of the factor lists will have noticed with me that some SUP primefactors are themselves near smoothly undulating. 'Near' because of an initial prefix and the repeating 6-digit undulators.
This time we divide the SUP with some or all of its prime factors upto 13. The number of candidates for 'Mark 13' are significant lower than the previous ones (only 5 cases found) hence the following concise table.
'Mark 11' wasn't forgotten but yield only 22-digit undulators (For these cases with long undulators see undulmore.htm).

[k](d1d2d3d4d5d6)n = NSUP's (Near Smoothly Undulating Primes)  Mark 13  
4(94)w / 2 / 13 (49*10n–94)/(99*2*13) = [19](036519)uStep 6w + 3Link
5(85)w / 3 / 5 / 13 (58*10n–85)/(99*3*5*13) = [3](004403)uStep 6w + 3Link
6(76)w / 22 / 13 (67*10n–76)/(99*4*13) = [13](014763)uStep 6w + 3Link
7(67)w / 13 (76*10n–67)/(99*13) = [59](052059)uStep 6w + 3Link
8(58)w / 2 / 3 / 13 (85*10n–58)/(99*2*3*13) = [11](007511)uStep 6w + 3Link










The “NSUP” Table


The reference table for
Near Smoothly Undulating Primes
Cases with 6-digit undulators
derived from the SUPP's

  Mark 3  
This collection is complete for
probable primes up to see headings digits.
PDG = Patrick De Geest
NSUPFormula
Accolades = prime exp
WhoWhenStatusPrime
Certificat
¬ 
   n ⩾ 50141 (PDG, August 16, 2022)
1(31)2498/3 = [4377](104377)832 (13*104997–31)/(99*3) PDGAug 06 2022PRP View
¬ 
   n ⩾ 50655 (PDG, August 16, 2022)
1(41)1/3 = [47](138047)0 (14*10{3}–41)/(99*3) PDGAug 06 2022PRP View
1(41)199/3 = [47](138047)66 (14*10399–41)/(99*3) PDGAug 06 2022PRP View
1(41)16654/3 = [47](138047)5551 (14*1033309–41)/(99*3) PDGAug 16 2022PRP View
¬ 
   n ⩾ 51677 (PDG, August 17, 2022)
1(61)2/3 = [5387](205387)0 (16*10{5}–61)/(99*3) PDGAug 06 2022PRP View
1(61)206/3 = [5387](205387)68 (16*10413–61)/(99*3) PDGAug 06 2022PRP View
¬ 
   n ⩾ 50001 (PDG, August 7, 2022)
1(71)85/3 = [57](239057)28 (17*10171–71)/(99*3) PDGAug 06 2022PRP View
1(71)202/3 = [57](239057)67 (17*10405–71)/(99*3) PDGAug 06 2022PRP View
1(71)526/3 = [57](239057)175 (17*101053–71)/(99*3) PDGAug 06 2022PRP View
1(71)4777/3 = [57](239057)1592 (17*109555–71)/(99*3) PDGAug 06 2022PRP View
¬ 
   n ⩾ 50009 (PDG, August 7, 2022)
1(91)2/3 = [6397](306397)0 (19*10{5}–91)/(99*3) PDGAug 06 2022PRP View
¬ 
   n ⩾ 50095 (PDG, August 17, 2022)
3(13)57/3 = [1](043771)19 (31*10115–13)/(99*3) PDGAug 06 2022PRP View
3(13)381/3 = [1](043771)127 (31*10763–13)/(99*3) PDGAug 06 2022PRP View
3(13)2610/3 = [1](043771)870 (31*105221–13)/(99*3) PDGAug 06 2022PRP View
¬ 
   n ⩾ 50161 (PDG, August 17, 2022)
3(23)132/3 = [1](077441)44 (32*10265–23)/(99*3) PDGAug 06 2022PRP View
3(23)4050/3 = [1](077441)1350 (32*10{8101}–23)/(99*3) PDGAug 06 2022PRP View
¬ 
   n ⩾ 51433 (PDG, August 17, 2022)
3(43)255/3 = [1](144781)85 (34*10511–43)/(99*3) PDGAug 06 2022PRP View
3(43)16995/3 = [1](144781)5665 (34*1033991–43)/(99*3) PDGAug 17 2022PRP View
3(43)21198/3 = [1](144781)7066 (34*10{42397}–43)/(99*3) PDGAug 17 2022PRP View
¬ 
   n ⩾ 51997 (PDG, August 17, 2022)
3(53)6/3 = [1](178451)2 (35*10{13}–53)/(99*3) PDGAug 06 2022PRP View
3(53)15/3 = [1](178451)5 (35*10{31}–53)/(99*3) PDGAug 06 2022PRP View
3(53)87/3 = [1](178451)29 (35*10175–53)/(99*3) PDGAug 06 2022PRP View
¬ 
   n ⩾ 50101 (PDG, August 17, 2022)
3(73)3/3 = [1](245791)1 (37*10{7}–73)/(99*3) PDGAug 06 2022PRP View
3(73)12/3 = [1](245791)4 (37*1025–73)/(99*3) PDGAug 06 2022PRP View
3(73)435/3 = [1](245791)145 (37*10871–73)/(99*3) PDGAug 06 2022PRP View
3(73)462/3 = [1](245791)154 (37*10925–73)/(99*3) PDGAug 06 2022PRP View
¬ 
   n ⩾ 53689 (PDG, August 18, 2022)
3(83)6/3 = [1](279461)2 (38*10{13}–83)/(99*3) PDGAug 06 2022PRP View
3(83)33/3 = [1](279461)11 (38*10{67}–83)/(99*3) PDGAug 06 2022PRP View
¬ 
   n ⩾ 53001 (PDG, August 18, 2022)
7(17)1/3 = [239](057239)0 (71*10{3}–17)/(99*3) PDGAug 06 2022PRP View
7(17)4141/3 = [239](057239)1380 (71*108283–17)/(99*3) PDGAug 06 2022PRP View
¬ 
   n ⩾ 50231 (PDG, August 18, 2022)
7(37)26/3 = [24579](124579)8 (73*10{53}–37)/(99*3) PDGAug 06 2022PRP View
7(37)20771/3 = [24579](124579)6923 (73*10{41543}–37)/(99*3) PDGAug 18 2022PRP View
¬ 
   n ⩾ 51705 (PDG, August 18, 2022)
7(47)7/3 = [24579](124579)2 (74*1015–47)/(99*3) PDGAug 06 2022PRP View
7(47)5137/3 = [24579](124579)1712 (74*1010275–47)/(99*3) PDGAug 06 2022PRP View
7(47)5188/3 = [24579](124579)1729 (74*1010377–47)/(99*3) PDGAug 06 2022PRP View
¬ 
   n ⩾ 50315 (PDG, August 19, 2022)
7(97)1361/3 = [26599](326599)453 (79*102723–97)/(99*3) PDGAug 06 2022PRP View
7(97)11714/3 = [26599](326599)3904 (79*1023429–97)/(99*3) PDGAug 19 2022PRP View
7(97)16706/3 = [26599](326599)5568 (79*10{33413}–97)/(99*3) PDGAug 19 2022PRP View
¬ 
   n ⩾ 50353 (PDG, August 19, 2022)
9(19)0/3 = [3](063973)0 (91*101–19)/(99*3) PDGAug 06 2022PRP View
9(19)2748/3 = [3](063973)916 (91*105497–19)/(99*3) PDGAug 06 2022PRP View
¬ 
   n ⩾ 51289 (PDG, August 19, 2022)
9(29)0/3 = [3](097643)0 (92*101–29)/(99*3) PDGAug 06 2022PRP View
9(29)141/3 = [3](097643)47 (92*10{283}–29)/(99*3) PDGAug 06 2022PRP View
¬ 
   n ⩾ 50071 (PDG, August 19, 2022)
9(49)0/3 = [3](164983)0 (94*101–49)/(99*3) PDGAug 06 2022PRP View
9(49)3/3 = [3](164983)1 (94*10{7}–49)/(99*3) PDGAug 06 2022PRP View
9(49)5547/3 = [3](164983)1849 (94*1011095–49)/(99*3) PDGAug 06 2022PRP View
¬ 
   n ⩾ 58615 (PDG, August 20, 2022)
9(59)0/3 = [3](198653)0 (95*101–59)/(99*3) PDGAug 06 2022PRP View
9(59)3/3 = [3](198653)1 (95*10{7}–59)/(99*3) PDGAug 06 2022PRP View
9(59)12/3 = [3](198653)4 (95*1025–59)/(99*3) PDGAug 06 2022PRP View
9(59)84/3 = [3](198653)28 (95*10169–59)/(99*3) PDGAug 06 2022PRP View
¬ 
   n ⩾ 52375 (PDG, August 20, 2022)
9(79)0/3 = [3](265993)0 (97*101–79)/(99*3) PDGAug 06 2022PRP View
9(79)3/3 = [3](265993)1 (97*10{7}–79)/(99*3) PDGAug 06 2022PRP View
9(79)24/3 = [3](265993)8 (97*1049–79)/(99*3) PDGAug 06 2022PRP View
9(79)42/3 = [3](265993)14 (97*1085–79)/(99*3) PDGAug 06 2022PRP View
9(79)1023/3 = [3](265993)341 (97*102047–79)/(99*3) PDGAug 06 2022PRP View
9(79)2040/3 = [3](265993)680 (97*104081–79)/(99*3) PDGAug 06 2022PRP View
¬ 
   n ⩾ 51079 (PDG, August 20, 2022)
9(89)0/3 = [3](299663)0 (98*101–89)/(99*3) PDGAug 06 2022PRP View
9(89)6/3 = [3](299663)2 (98*10{13}–89)/(99*3) PDGAug 06 2022PRP View
9(89)975/3 = [3](299663)325 (98*10{1951}–89)/(99*3) PDGAug 06 2022PRP View



The reference table for
Near Smoothly Undulating Primes
Cases with 6-digit undulators
derived from the composite set of SUP's

  Mark 3  
This collection is complete for
probable primes up to see headings digits.
PDG = Patrick De Geest
NSUPFormula
Accolades = prime exp
WhoWhenStatusPrime
Certificat
¬ 
   n ⩾ 53855 (PDG, August 21, 2022)
2(32)4706/25/3 = [242](003367)1568 (23*10{9413}–32)/(99*32*3) PDGAug 09 2022PRP View
¬ 
   n ⩾ 50063 (PDG, August 21, 2022)
2(92)2/22/3 = [2441](077441)0 (29*10{5}–92)/(99*4*3) PDGAug 09 2022PRP View
¬ 
   n ⩾ 50067 (PDG, August 21, 2022)
4(14)7/2/3 = [69](023569)2 (41*1015–14)/(99*2*3) PDGAug 09 2022PRP View
4(14)250/2/3 = [69](023569)83 (41*10501–14)/(99*2*3) PDGAug 09 2022PRP View
4(14)2676/2/3 = [69](023569)890 (41*105343–14)/(99*2*3) PDGAug 09 2022PRP View
¬ 
   n ⩾ 72305 (PDG, August 21, 2022)
4(34)143/2/3 = [7239](057239)47 (43*10287–34)/(99*2*3) PDGAug 09 2022PRP View
4(34)7109/2/3 = [7239](057239)2369 (43*1014219–34)/(99*2*3) PDGAug 09 2022PRP View
¬ 
   n ⩾ 53325 (PDG, August 22, 2022)
4(74)1/2/3 = [79](124579)0 (47*10{3}–74)/(99*2*3) PDGAug 09 2022PRP View
4(74)226/2/3 = [79](124579)75 (47*10453–74)/(99*2*3) PDGAug 09 2022PRP View
¬ 
   n ⩾ 52259 (PDG, August 22, 2022)
4(94)59/2/3 = [8249](158249)19 (49*10119–94)/(99*2*3) PDGAug 09 2022PRP View
¬ 
   n ⩾ 50729 (PDG, August 10, 2022)
5(35)35/5/3 = [3569](023569)11 (53*10{71}–35)/(99*5*3) PDGAug 09 2022PRP View
5(35)218/5/3 = [3569](023569)72 (53*10437–35)/(99*5*3) PDGAug 09 2022PRP View
¬ 
   n ⩾ 50609 (PDG, August 22, 2022)
5(65)32/5/3 = [3771](043771)10 (56*1065–65)/(99*5*3) PDGAug 09 2022PRP View
5(65)1646/5/3 = [3771](043771)548 (56*103293–65)/(99*5*3) PDGAug 09 2022PRP View
¬ 
   n ⩾ 67655 (PDG, August 23, 2022)
5(95)20/5/3 = [3973](063973)6 (59*10{41}–95)/(99*5*3) PDGAug 09 2022PRP View
5(95)695/5/3 = [3973](063973)231 (59*101391–95)/(99*5*3) PDGAug 09 2022PRP View
¬ 
   n ⩾ 80047 (PDG, August 12, 2022)
6(16)?/24/3 = [128367](003367)? (61*10?–16)/(99*16*3) PDGAug 11 2022PRP View
¬ 
   n ⩾ 65935 (PDG, August 23, 2022)
6(56)3/23/3 = [273569](023569)0 (65*10{7}–56)/(99*8*3) PDGAug 11 2022PRP View
6(56)7425/23/3 = [273569](023569)2474 (65*10{14851}–56)/(99*8*3) PDGAug 11 2022PRP View
¬ 
   n ⩾ 50035 (PDG, August 11, 2022)
6(76)9/22/3 = [563973](063973)2474 (67*10{19}–76)/(99*4*3) PDGAug 11 2022PRP View
6(76)11979/22/3 = [563973](063973)3992 (67*1023959–76)/(99*4*3) PDGAug 11 2022PRP View
¬ 
   n ⩾ 53951 (PDG, August 23, 2022)
7(67)2/3 = [25589](225589)0 (76*10{5}–67)/(99*3) PDGAug 11 2022PRP View
7(67)29/3 = [25589](225589)9 (76*10{59}–67)/(99*3) PDGAug 11 2022PRP View
¬ 
   n ⩾ 53213 (PDG, August 24, 2022)
8(38)11/2/3 = [13973](063973)3 (83*10{23}–38)/(99*2*3) PDGAug 11 2022PRP View
8(38)107/2/3 = [13973](063973)35 (83*10215–38)/(99*2*3) PDGAug 11 2022PRP View
8(38)161/2/3 = [13973](063973)53 (83*10323–38)/(99*2*3) PDGAug 11 2022PRP View
8(38)389/2/3 = [13973](063973)129 (83*10779–38)/(99*2*3) PDGAug 11 2022PRP View
¬ 
   n ⩾ 52385 (PDG, August 24, 2022)
8(98)2/2/3 = [14983](164983)0 (89*10{5}–98)/(99*2*3) PDGAug 11 2022PRP View
8(98)3218/2/3 = [14983](164983)1072 (89*10{6437}–98)/(99*2*3) PDGAug 11 2022PRP View



The reference table for
Near Smoothly Undulating Primes
Cases with 6-digit undulators
derived from the composite set of SUPP's

  Mark 7  
This collection is complete for
probable primes up to see headings digits.
PDG = Patrick De Geest
NSUPFormula
Accolades = prime exp
WhoWhenStatusPrime
Certificat
¬ 
   n ⩾ 51003 (PDG, August 24, 2022)
1(61)40/7 = [23](088023)13 (16*1081–61)/(99*7) PDGAug 12 2022PRP View
1(61)160/7 = [23](088023)53 (16*10321–61)/(99*7) PDGAug 12 2022PRP View
1(61)190/7 = [23](088023)63 (16*10381–61)/(99*7) PDGAug 12 2022PRP View
1(61)442/7 = [23](088023)147 (16*10885–61)/(99*7) PDGAug 12 2022PRP View
1(61)511/7 = [23](088023)170 (16*101023–61)/(99*7) PDGAug 12 2022PRP View
¬ 
   n ⩾ 51359 (PDG, August 12, 2022)
1(71)?/7 = [2453](102453)? (17*10?–71)/(99*7) PDGAug 12 2022PRP View
¬ 
   n ⩾ 50031 (PDG, August 25, 2022)
3(43)79/7 = [49](062049)26 (34*10159–43)/(99*7) PDGAug 12 2022PRP View
3(43)2809/7 = [49](062049)936 (34*105619–43)/(99*7) PDGAug 12 2022PRP View
¬ 
   n ⩾ 54083 (PDG, August 12, 2022)
3(73)1230/7 = [5339](105339)410 (37*102465–73)/(99*7) PDGAug 12 2022PRP View
¬ 
   n ⩾ 52381 (PDG, August 25, 2022)
7(17)21/7 = [1](024531)7 (71*10{43}–17)/(99*7) PDGAug 12 2022PRP View
7(17)24/7 = [1](024531)8 (71*1049–17)/(99*7) PDGAug 12 2022PRP View
¬ 
   n ⩾ 53947 (PDG, August 25, 2022)
7(27)9/7 = [1](038961)3 (72*10{19}–27)/(99*7) PDGAug 12 2022PRP View
7(27)33/7 = [1](038961)11 (72*10{67}–27)/(99*7) PDGAug 12 2022PRP View
7(27)84/7 = [1](038961)28 (72*10169–27)/(99*7) PDGAug 12 2022PRP View
7(27)114/7 = [1](038961)38 (72*10{229}–27)/(99*7) PDGAug 12 2022PRP View
7(27)180/7 = [1](038961)60 (72*10361–27)/(99*7) PDGAug 12 2022PRP View
7(27)10851/7 = [1](038961)3617 (72*1021703–27)/(99*7) PDGAug 12 2022PRP View
¬ 
   n ⩾ 51139 (PDG, August 26, 2022)
7(37)?/7 = [1](053391)? (73*10?–37)/(99*7) PDGAug 13 2022PRP View
¬ 
   n ⩾ 50473 (PDG, August 26, 2022)
7(47)6/7 = [1](067821)2 (74*10{13}–47)/(99*7) PDGAug 13 2022PRP View
7(47)9/7 = [1](067821)3 (74*10{19}–47)/(99*7) PDGAug 13 2022PRP View
7(47)183/7 = [1](067821)61 (74*10{367}–47)/(99*7) PDGAug 13 2022PRP View
¬ 
   n ⩾ 54451 (PDG, August 26, 2022)
7(57)2760/7 = [1](082251)920 (75*10{5521}–57)/(99*7) PDGAug 13 2022PRP View
7(57)5904/7 = [1](082251)1968 (75*1011809–57)/(99*7) PDGAug 13 2022PRP View
¬ 
   n ⩾ 54901 (PDG, August 27, 2022)
7(87)9/7 = [1](125541)3 (78*10{19}–87)/(99*7) PDGAug 13 2022PRP View
7(87)600/7 = [1](125541)200 (78*10{1201}–87)/(99*7) PDGAug 13 2022PRP View
7(87)1509/7 = [1](125541)503 (78*10{3019}–87)/(99*7) PDGAug 13 2022PRP View
¬ 
   n ⩾ 53881 (PDG, August 27, 2022)
7(97)12/7 = [1](139971)4 (79*1025–97)/(99*7) PDGAug 13 2022PRP View
7(97)6438/7 = [1](139971)2146 (79*1012877–97)/(99*7) PDGAug 13 2022PRP View
¬ 
   n ⩾ 52167 (PDG, August 27, 2022)
9(59)7/7 = [137](085137)2 (95*1015–59)/(99*7) PDGAug 13 2022PRP View
9(59)79/7 = [137](085137)26 (95*10159–59)/(99*7) PDGAug 13 2022PRP View
9(59)202/7 = [137](085137)67 (95*10405–59)/(99*7) PDGAug 13 2022PRP View
9(59)7924/7 = [137](085137)2641 (95*1015849–59)/(99*7) PDGAug 13 2022PRP View
¬ 
   n ⩾ 50189 (PDG, August 27, 2022)
9(79)2/7 = [13997](113997)0 (97*10{5}–79)/(99*7) PDGAug 13 2022PRP View
9(79)8/7 = [13997](113997)2 (97*10{17}–79)/(99*7) PDGAug 13 2022PRP View
9(79)3782/7 = [13997](113997)1260 (97*107565–79)/(99*7) PDGAug 13 2022PRP View
9(79)5321/7 = [13997](113997)1773 (97*1010643–79)/(99*7) PDGAug 13 2022PRP View



The reference table for
Near Smoothly Undulating Primes
Cases with 6-digit undulators
derived from the composite set of SUP's

  Mark 7  
This collection is complete for
probable primes up to see headings digits.
PDG = Patrick De Geest
NSUPFormula
Accolades = prime exp
WhoWhenStatusPrime
Certificat
¬ 
   n ⩾ 54015 (PDG, August 27, 2022)
2(52)1/4/3/7 = [3](006253)0 (25*10{3}–52)/(99*4*3*7) PDGAug 14 2022PRP View
2(52)1726/4/3/7 = [3](006253)575 (25*103453–52)/(99*4*3*7) PDGAug 14 2022PRP View
¬ 
   n ⩾ 55145 (PDG, August 27, 2022)
2(72)2/23/7 = [487](012987)0 (27*10{5}–72)/(99*8*7) PDGAug 14 2022PRP View
2(72)32/23/7 = [487](012987)10 (27*1065–72)/(99*8*7) PDGAug 14 2022PRP View
2(72)440/23/7 = [487](012987)146 (27*10{881}–72)/(99*8*7) PDGAug 14 2022PRP View
2(72)1328/23/7 = [487](012987)442 (27*10{2657}–72)/(99*8*7) PDGAug 14 2022PRP View
¬ 
   n ⩾ 51465 (PDG, August 28, 2022)
4(34)1/2/7 = [31](024531)0 (43*10{3}–34)/(99*2*7) PDGAug 14 2022PRP View
4(34)4/2/7 = [31](024531)45 (43*109–34)/(99*2*7) PDGAug 14 2022PRP View
4(34)22/2/7 = [31](024531)7 (43*1045–34)/(99*2*7) PDGAug 14 2022PRP View
4(34)43/2/7 = [31](024531)14 (43*1087–34)/(99*2*7) PDGAug 14 2022PRP View
4(34)193/2/7 = [31](024531)64 (43*10387–34)/(99*2*7) PDGAug 14 2022PRP View
4(34)6670/2/7 = [31](024531)2223 (43*1013341–34)/(99*2*7) PDGAug 14 2022PRP View
¬ 
   n ⩾ 53261 (PDG, August 28, 2022)
4(74)2/2/7 = [3391](053391)0 (47*10{5}–74)/(99*2*7) PDGAug 14 2022PRP View
4(74)11/2/7 = [3391](053391)3 (47*10{23}–74)/(99*2*7) PDGAug 14 2022PRP View
4(74)41/2/7 = [3391](053391)13 (47*10{83}–74)/(99*2*7) PDGAug 14 2022PRP View
4(74)224/2/7 = [3391](053391)74 (47*10{449}–74)/(99*2*7) PDGAug 14 2022PRP View
4(74)1637/2/7 = [3391](053391)545 (47*103275–74)/(99*2*7) PDGAug 14 2022PRP View
¬ 
   n ⩾ 51195 (PDG, August 28, 2022)
5(25)1/52/3/7 = [1](000481)0 (52*10{3}–25)/(99*25*3*7) PDGAug 14 2022PRP View
5(25)10/52/3/7 = [1](000481)3 (52*1021–25)/(99*25*3*7) PDGAug 14 2022PRP View
5(25)40/52/3/7 = [1](000481)13 (52*1081–25)/(99*25*3*7) PDGAug 14 2022PRP View
5(25)21964/52/3/7 = [1](000481)7321 (52*1043929–25)/(99*25*3*7) PDGAug 28 2022PRP View
¬ 
   n ⩾ 51677 (PDG, August 28, 2022)
5(75)11/52/7 = [329](004329)3 (57*10{23}–75)/(99*25*7) PDGAug 14 2022PRP View
5(75)26/52/7 = [329](004329)8 (57*10{53}–75)/(99*25*7) PDGAug 14 2022PRP View
5(75)428/52/7 = [329](004329)142 (57*10{857}–75)/(99*25*7) PDGAug 14 2022PRP View
5(75)644/52/7 = [329](004329)214 (57*10{1289}–75)/(99*25*7) PDGAug 28 2022PRP View
¬ 
   n ⩾ 50127 (PDG, August 28, 2022)
5(95)1/5/7 = [17](027417)0 (59*10{3}–95)/(99*5*7) PDGAug 14 2022PRP View
5(95)232/5/7 = [17](027417)77 (59*10465–95)/(99*5*7) PDGAug 14 2022PRP View
5(95)3391/5/7 = [17](027417)1130 (59*106783–95)/(99*5*7) PDGAug 14 2022PRP View
5(95)20791/5/7 = [17](027417)6930 (59*1041583–95)/(99*5*7) PDGAug 28 2022PRP View
¬ 
   n ⩾ 52089 (PDG, August 28, 2022)
6(16)4/24/7 = [5501443](001443)0 (61*109–16)/(99*16*7) PDGAug 15 2022PRP View
6(16)10/24/7 = [5501443](001443)2 (61*1021–16)/(99*16*7) PDGAug 15 2022PRP View
¬ 
   n ⩾ 51365 (PDG, August 29, 2022)
6(76)2/22/7 = [2417](027417)0 (67*10{5}–76)/(99*4*7) PDGAug 15 2022PRP View
6(76)8/22/7 = [2417](027417)2 (67*10{17}–76)/(99*4*7) PDGAug 15 2022PRP View
6(76)134/22/7 = [2417](027417)44 (67*10{269}–76)/(99*4*7) PDGAug 15 2022PRP View
6(76)17123/22/7 = [2417](027417)5707 (67*1034247–76)/(99*4*7) PDGAug 29 2022PRP View
¬ 
   n ⩾ 52915 (PDG, August 29, 2022)
7(67)84/7 = [1](096681)28 (76*10169–67)/(99*7) PDGAug 15 2022PRP View
7(67)1035/7 = [1](096681)345 (76*102071–67)/(99*7) PDGAug 15 2022PRP View
7(67)8670/7 = [1](096681)2890 (76*1017341–67)/(99*7) PDGAug 15 2022PRP View
¬ 
   n ⩾ 60029 (PDG, August 16, 2022)
8(78)2/2/7 = [6277](056277)0 (87*10{5}–78)/(99*2*7) PDGAug 15 2022PRP View



The reference table for
Near Smoothly Undulating Primes
Cases with 6-digit undulators
derived from both sets of SUPP's and SUP's

  Mark 13  
This collection is complete for
probable primes up to see headings digits.
PDG = Patrick De Geest
NSUPFormula
Accolades = prime exp
WhoWhenStatusPrime
Certificat
¬ 
   n ⩾ 20175 (PDG, August 25, 2022)
4(94)1/2/13 = [19](036519)0 (49*10{3}–94)/(99*2*13) PDGAug 24 2022PRP View
4(94)4/2/13 = [19](036519)1 (49*109–94)/(99*2*13) PDGAug 24 2022PRP View
4(94)76/2/13 = [19](036519)25 (49*10153–94)/(99*2*13) PDGAug 24 2022PRP View
¬ 
   n ⩾ 20427 (PDG, August 25, 2022)
5(85)1/3/5/13 = [3](004403)0 (58*10{3}–58)/(99*3*5*13) PDGAug 24 2022PRP View
5(85)4/3/5/13 = [3](004403)1 (58*109–58)/(99*3*5*13) PDGAug 24 2022PRP View
5(85)7/3/5/13 = [3](004403)2 (58*1015–58)/(99*3*5*13) PDGAug 24 2022PRP View
5(85)358/3/5/13 = [3](004403)119 (58*10717–58)/(99*3*5*13) PDGAug 24 2022PRP View
5(85)1204/3/5/13 = [3](004403)401 (58*102409–58)/(99*3*5*13) PDGAug 24 2022PRP View
¬ 
   n ⩾ 20259 (PDG, August 25, 2022)
6(76)1/22/13 = [13](014763)0 (67*10{3}–76)/(99*4*13) PDGAug 24 2022PRP View
6(76)4/22/13 = [13](014763)1 (67*109–76)/(99*4*13) PDGAug 24 2022PRP View
6(76)10/22/13 = [13](014763)3 (67*1021–76)/(99*4*13) PDGAug 24 2022PRP View
6(76)178/22/13 = [13](014763)59 (67*10357–76)/(99*4*13) PDGAug 24 2022PRP View
6(76)580/22/13 = [13](014763)193 (67*101161–76)/(99*4*13) PDGAug 24 2022PRP View
6(76)2851/22/13 = [13](014763)950 (67*105703–76)/(99*4*13) PDGAug 24 2022PRP View
¬ 
   n ⩾ 20109 (PDG, August 25, 2022)
7(67)1/13 = [59](052059)0 (76*10{3}–67)/(99*13) PDGAug 24 2022PRP View
7(67)13/13 = [59](052059)4 (76*1027–67)/(99*13) PDGAug 24 2022PRP View
7(67)34/13 = [59](052059)11 (76*1069–67)/(99*13) PDGAug 24 2022PRP View
7(67)604/13 = [59](052059)201 (76*101209–67)/(99*13) PDGAug 24 2022PRP View
7(67)718/13 = [59](052059)239 (76*101437–67)/(99*13) PDGAug 24 2022PRP View
7(67)874/13 = [59](052059)291 (76*101749–67)/(99*13) PDGAug 24 2022PRP View
¬ 
   n ⩾ 40035 (PDG, August 25, 2022)
8(58)1/2/3/13 = [11](007511)0 (85*10{3}–58)/(99*2*3*13) PDGAug 24 2022PRP View
8(58)10/2/3/13 = [11](007511)3 (85*1021–58)/(99*2*3*13) PDGAug 24 2022PRP View
8(58)13/2/3/13 = [11](007511)4 (85*1027–58)/(99*2*3*13) PDGAug 24 2022PRP View
8(58)12703/2/3/13 = [11](007511)4234 (85*1025407–58)/(99*2*3*13) PDGAug 25 2022PRP View


Sources Revealed












[up TOP OF PAGE]


( © All rights reserved ) - Last modified : March 13, 2023.

Patrick De Geest - Belgium flag - Short Bio - Some Pictures
E-mail address : pdg@worldofnumbers.com