World!Of
Numbers
HOME plate
WON |
Near Smoothly Undulating
Primes (NSUP's)
  (with 22-digit undulators)
rood  1  rood  2  rood  3  rood  4  rood  5  rood  6  rood
rood Near Smoothly Undulating Primes NSUP's (with 6-digit undulators) rood
rood Undulating Palindromic Primes rood Palindromic Wing Primes rood
rood Plateau & Depression Palindromic Primes rood Palindromic Merlon Primes rood
rood Home Primes rood Circular Primes rood SUPP-sorted



NSUP” Prime Project Tables


Case [k](d1d2d3...d20d21d22)u = [prefix](22-digit undulator).
Attentive readers of the factor lists will have noticed with me that some SUP(P) primefactors are themselves near smoothly undulating. 'Near' because of an initial prefix and the repeating undulators.
Here we divide the SUP(P) with some or all of its prime factors upto 11. The candidates for 'Mark 11' can be found in the following concise table.

[k](d1d2d3...d20d21d22)n = NSUP's (Near Smoothly Undulating Primes)  Mark 11  
1(21)w / 11 (12*10n–21)/(99*11) = [11](0192837465564738291011)uStep 22w + 3Link
1(31)w / 11 (13*10n–31)/(99*11) = [119375573921](0284664830119375573921)uStep 22w + 13Link
1(41)w / 11 (14*10n–41)/(99*11) = [12855831](0376492194674012855831)uStep 22w + 9Link
1(51)w / 11 (15*10n–51)/(99*11) = [137741](0468319559228650137741)uStep 22w + 7Link
1(61)w / 11 (16*10n–61)/(99*11) = [146923783287419651](0560146923783287419651)uStep 22w + 19Link
1(71)w / 11 (17*10n–71)/(99*11) = [1561](0651974288337924701561)uStep 22w + 5Link
1(81)w / 11 (18*10n–81)/(99*11) = [1652892561983471](0743801652892561983471)uStep 22w + 17Link
1(91)w / 11 (19*10n–91)/(99*11) = [17447199265381](0835629017447199265381)uStep 22w + 15Link
2(12)w / 22 / 11 (21*10n–12)/(99*4*11) = [48209366391184573](0027548209366391184573)uStep 22w + 19Link
2(32)w / 25 / 11 (23*10n–32)/(99*32*11) = [66](0009182736455463728191)uStep 22w + 5Link
2(52)w / 22 / 11 (25*10n–52)/(99*4*11) = [573921028466483](0119375573921028466483)uStep 22w + 17Link
2(72)w / 23 / 11 (27*10n–72)/(99*8*11) = [3099173553719](0082644628099173553719)uStep 22w + 15Link
2(92)w / 22 / 11 (29*10n–92)/(99*4*11) = [665748393](0211202938475665748393)uStep 22w + 11Link
3(13)w / 11 (31*10n–13)/(99*11) = [28466483](0119375573921028466483)uStep 22w + 9Link
3(23)w / 11 (32*10n–23)/(99*11) = [2938475665748393](0211202938475665748393)uStep 22w + 17Link
3(43)w / 11 (34*10n–43)/(99*11) = [312213](0394857667584940312213)uStep 22w + 7Link
3(53)w / 11 (35*10n–53)/(99*11) = [32139577594123](0486685032139577594123)uStep 22w + 15Link
3(73)w / 11 (37*10n–73)/(99*11) = [339761248852157943](0670339761248852157943)u ACStep 22w + 19Link
3(83)w / 11 (38*10n–83)/(99*11) = [3489439853](0762167125803489439853)uStep 22w + 11Link
4(14)w / 2 / 11 (41*10n–14)/(99*2*11) = [188246097337](0064279155188246097337)uStep 22w + 13Link
4(34)w / 2 / 11 (43*10n–34)/(99*2*11) = [19742883379247](0156106519742883379247)uStep 22w + 15Link
4(54)w / 2 / 11 (45*10n–54)/(99*2*11) = [20661157](0247933884297520661157)uStep 22w + 9Link
4(74)w / 2 / 11 (47*10n–74)/(99*2*11) = [2157943067](0339761248852157943067)uStep 22w + 11Link
4(94)w / 2 / 11 (49*10n–94)/(99*2*11) = [224977](0431588613406795224977)uStep 22w + 7Link
5(15)w / 5 / 11 (51*10n–15)/(99*5*11) = [9366391184573](0027548209366391184573)uStep 22w + 15Link
5(25)w / 52 / 11 (52*10n–25)/(99*25*11) = [191](0009182736455463728191)uStep 22w + 5Link
5(35)w / 5 / 11 (53*10n–35)/(99*5*11) = [97337](0064279155188246097337)uStep 22w + 7Link
5(45)w / 5 / 11 (54*10n–45)/(99*5*11) = [99173553719](0082644628099173553719)uStep 22w + 13Link
5(65)w / 5 / 11 (56*10n–65)/(99*5*11) = [1028466483](0119375573921028466483)uStep 22w + 11Link
5(75)w / 52 / 11 (57*10n–75)/(99*25*11) = [209366391184573](0027548209366391184573)uStep 22w + 17Link
5(85)w / 5 / 11 (58*10n–85)/(99*5*11) = [106519742883379247](0156106519742883379247)uStep 22w + 19Link
5(95)w / 5 / 11 (59*10n–95)/(99*5*11) = [10835629](0174471992653810835629)uStep 22w + 9Link
6(16)w / 24 / 11 (61*10n–16)/(99*16*11) = [35009182736455463728191](0009182736455463728191)uStep 22w + 25Link
6(56)w / 23 / 11 (65*10n–56)/(99*8*11) = [746097337](0064279155188246097337)uStep 22w + 11Link
6(76)w / 22 / 11 (67*10n–76)/(99*4*11) = [15380835629](0174471992653810835629)u ACStep 22w + 13Link
7(17)w / 11 (71*10n–17)/(99*11) = [6519742883379247](0156106519742883379247)uStep 22w + 17Link
7(27)w / 11 (72*10n–27)/(99*11) = [661157](0247933884297520661157)uStep 22w + 7Link
7(37)w / 11 (73*10n–37)/(99*11) = [67](0339761248852157943067)u ACStep 22w + 3Link
7(47)w / 11 (74*10n–47)/(99*11) = [6795224977](0431589613406795224977)uStep 22w + 11Link
7(57)w / 11 (75*10n–57)/(99*11) = [6887](0523415977961432506887)uStep 22w + 5Link
7(67)w / 11 (76*10n–67)/(99*11) = [69788797](0615243342516069788797)u ACStep 22w + 9Link
7(87)w / 11 (78*10n–87)/(99*11) = [71625344352617](0798898071625344352617)uStep 22w + 15Link
7(97)w / 11 (79*10n–97)/(99*11) = [725436179981634527](0890725436179981634527)uStep 22w + 19Link
8(18)w / 2 / 11 (81*10n–18)/(99*2*11) = [3719](0082644628099173553719)uStep 22w + 5Link
8(38)w / 2 / 11 (83*10n–38)/(99*2*11) = [3810835629](0174471992653810835629)uStep 22w + 11Link
8(58)w / 2 / 11 (85*10n–58)/(99*2*11) = [39](0266299357208448117539)uStep 22w + 3Link
8(78)w / 2 / 11 (87*10n–78)/(99*2*11) = [399449](0358126721763085399449)uStep 22w + 7Link
8(98)w / 2 / 11 (89*10n–98)/(99*2*11) = [4086317722681359](0449954086317722681359)uStep 22w + 17Link
9(19)w / 11 (91*10n–19)/(99*11) = [835629](0174471992653810835629)uStep 22w + 7Link
9(29)w / 11 (92*10n–29)/(99*11) = [8448117539](0266299357208448117539)uStep 22w + 11Link
9(49)w / 11 (94*10n–49)/(99*11) = [86317722681359](0449954086317722681359)uStep 22w + 15Link
9(59)w / 11 (95*10n–59)/(99*11) = [872359963269](0541781450872359963269)uStep 22w + 13Link
9(79)w / 11 (97*10n–79)/(99*11) = [89](0725436179981634527089)uStep 22w + 3Link
9(89)w / 11 (98*10n–89)/(99*11) = [8999](0817263544536271808999)uStep 22w + 5Link



The reference table for
Near Smoothly Undulating Primes
Cases with longer undulators
derived from both sets of SUPP's and SUP's

  Mark 11  
This collection is complete for
probable primes up to see headings digits.
PDG = Patrick De Geest
NSUPFormula
Accolades = prime exp
WhoWhenStatusPrime
Certificat
¬ 
   n ⩾ 100015 (PDG, September 9, 2022)
1(21)1/11 = [11](0192837465564738291011)0 (12*10{3}–21)/(99*11) PDGSep 03 2022PRP View
1(21)?/11 = [11](0192837465564738291011)? (12*10?–21)/(99*11) PDGSep 03 2022PRP View
¬ 
   n ⩾ 30769 (PDG, September 3, 2022)
1(31)?/11 = [119375573921](0284664830119375573921)? (13*10?–31)/(99*11) PDGSep 03 2022PRP View
¬ 
   n ⩾ 30127 (PDG, September 3, 2022)
1(41)950/11 = [12855831](0376492194674012855831)86 (14*10{1901}–41)/(99*11) PDGSep 03 2022PRP View
1(41)?/11 = [12855831](0376492194674012855831)? (14*10?–41)/(99*11) PDGSep 03 2022PRP View
¬ 
   n ⩾ 30169 (PDG, September 3, 2022)
1(51)?/11 = [137741](0468319559228650137741)? (15*10?–51)/(99*11) PDGSep 03 2022PRP View
¬ 
   n ⩾ 30511 (PDG, September 3, 2022)
1(61)9/11 = [146923783287419651](0560146923783287419651)0 (16*10{19}–61)/(99*11) PDGSep 03 2022PRP View
1(61)?/11 = [146923783287419651](0560146923783287419651)? (16*10?–61)/(99*11) PDGSep 03 2022PRP View
¬ 
   n ⩾ 31069 (PDG, September 3, 2022)
1(71)?/11 = [1561](0651974288337924701561)? (17*10?–71)/(99*11) PDGSep 03 2022PRP View
¬ 
   n ⩾ 30751 (PDG, September 3, 2022)
1(81)?/11 = [1652892561983471](0743801652892561983471)? (18*10?–81)/(99*11) PDGSep 03 2022PRP View
¬ 
   n ⩾ 31717 (PDG, September 3, 2022)
1(91)?/11 = [17447199265381](0835629017447199265381)? (19*10?–91)/(99*11) PDGSep 03 2022PRP View
¬ 
   n ⩾ 32645 (PDG, September 3, 2022)
2(12)9/22/11 = [48209366391184573](0027548209366391184573)0 (21*10{19}–12)/(99*4*11) PDGSep 03 2022PRP View
2(12)9656/22/11 = [48209366391184573](0027548209366391184573)877 (21*1019313–12)/(99*4*11) PDGSep 03 2022PRP View
2(12)?/22/11 = [48209366391184573](0027548209366391184573)? (21*10?–12)/(99*4*11) PDGSep 03 2022PRP View
¬ 
   n ⩾ 31003 (PDG, September 3, 2022)
2(32)13/25/11 = [66](0009182736455463728191)1 (23*1027–32)/(99*32*11) PDGSep 03 2022PRP View
2(32)?/25/11 = [66](0009182736455463728191)? (23*10?–32)/(99*32*11) PDGSep 03 2022PRP View
¬ 
   n ⩾ 30289 (PDG, September 3, 2022)
2(52)?/22/11 = [573921028466483](0119375573921028466483)? (25*10?–52)/(99*4*11) PDGSep 03 2022PRP View
¬ 
   n ⩾ 41793 (PDG, September 3, 2022)
2(72)?/23/11 = [3099173553719](0082644628099173553719)? (27*10?–72)/(99*8*11) PDGSep 03 2022PRP View
¬ 
   n ⩾ 84645 (PDG, September 3, 2022)
2(92)27/22/11 = [665748393](0211202938475665748393)2 (29*1055–92)/(99*4*11) PDGSep 03 2022PRP View
2(92)?/22/11 = [665748393](0211202938475665748393)? (29*10?–92)/(99*4*11) PDGSep 03 2022PRP View
¬ 
   n ⩾ 71135 (PDG, September 4, 2022)
3(13)?/11 = [28466483](0119375573921028466483)? (31*10?–13)/(99*11) PDGSep 03 2022PRP View
¬ 
   n ⩾ 30905 (PDG, September 4, 2022)
3(23)5827/11 = [2938475665748393](0211202938475665748393)529 (32*1011655–23)/(99*11) PDGSep 04 2022PRP View
3(23)?/11 = [2938475665748393](0211202938475665748393)? (32*10?–23)/(99*11) PDGSep 03 2022PRP View
¬ 
   n ⩾ 34217 (PDG, September 4, 2022)
3(43)?/11 = [312213](0394857667584940312213)? (34*10?–43)/(99*11) PDGSep 04 2022PRP View
¬ 
   n ⩾ 50813 (PDG, September 4, 2022)
3(53)73/11 = [32139577594123](0486685032139577594123)6 (35*10147–53)/(99*11) PDGSep 04 2022PRP View
3(53)128/11 = [32139577594123](0486685032139577594123)11 (35*10{257}–53)/(99*11) PDGSep 04 2022PRP View
3(53)?/11 = [32139577594123](0486685032139577594123)? (35*10?–53)/(99*11) PDGSep 04 2022PRP View
¬ 
   n ⩾ 1000001 (PDG, September 4, 2022)
3(73)?/11 = [339761248852157943](0670339761248852157943)? AC (37*10?–73)/(99*11) PDGSep 04 2022PRP View
¬ 
   n ⩾ 46739 (PDG, September 4, 2022)
3(83)6473/11 = [3489439853](0762167125803489439853)588 (38*1012947–83)/(99*11) PDGSep 04 2022PRP View
3(83)?/11 = [3489439853](0762167125803489439853)? (38*10?–83)/(99*11) PDGSep 04 2022PRP View
¬ 
   n ⩾ 32111 (PDG, September 4, 2022)
4(14)171/2/11 = [188246097337](0064279155188246097337)15 (41*10343–14)/(99*2*11) PDGSep 04 2022PRP View
4(14)?/2/11 = [188246097337](0064279155188246097337)? (41*10?–14)/(99*2*11) PDGSep 04 2022PRP View
¬ 
   n ⩾ 41749 (PDG, September 4, 2022)
4(34)?/2/11 = [19742883379247](0156106519742883379247)? (43*10?–34)/(99*2*11) PDGSep 04 2022PRP View
¬ 
   n ⩾ 44009 (PDG, September 4, 2022)
4(54)147/2/11 = [20661157](0247933884297520661157)13 (45*10295–54)/(99*2*11) PDGSep 04 2022PRP View
4(54)2281/2/11 = [20661157](0247933884297520661157)207 (45*104563–54)/(99*2*11) PDGSep 04 2022PRP View
4(54)?/2/11 = [20661157](0247933884297520661157)? (45*10?–54)/(99*2*11) PDGSep 04 2022PRP View
¬ 
   n ⩾ 33055 (PDG, September 4, 2022)
4(74)7386/2/11 = [2157943067](0339761248852157943067)671 (47*1014773–74)/(99*2*11) PDGSep 04 2022PRP View
4(74)?/2/11 = [2157943067](0339761248852157943067)? (47*10?–74)/(99*2*11) PDGSep 04 2022PRP View
¬ 
   n ⩾ 56833 (PDG, September 4, 2022)
4(94)3/2/11 = [224977](0431588613406795224977)0 (49*10{7}–94)/(99*2*11) PDGSep 04 2022PRP View
4(94)?/2/11 = [224977](0431588613406795224977)? (49*10?–94)/(99*2*11) PDGSep 04 2022PRP View
¬ 
   n ⩾ 51451 (PDG, September 4, 2022)
5(15)7/5/11 = [9366391184573](0027548209366391184573)0 (51*1015–15)/(99*5*11) PDGSep 04 2022PRP View
5(15)?/5/11 = [9366391184573](0027548209366391184573)? (51*10?–15)/(99*5*11) PDGSep 04 2022PRP View
¬ 
   n ⩾ 70603 (PDG, September 4, 2022)
5(25)2/52/11 = [191](0009182736455463728191)0 (52*10{5}–25)/(99*25*11) PDGSep 04 2022PRP View
5(25)5007/52/11 = [191](0009182736455463728191)455 (52*1010015–25)/(99*25*11) PDGSep 04 2022PRP View
5(25)?/52/11 = [191](0009182736455463728191)? (52*10?–25)/(99*25*11) PDGSep 04 2022PRP View
¬ 
   n ⩾ 35559 (PDG, September 4, 2022)
5(35)?/5/11 = [97337](0064279155188246097337)? (53*10?–35)/(99*5*11) PDGSep 04 2022PRP View
¬ 
   n ⩾ 57411 (PDG, September 4, 2022)
5(45)?/5/11 = [99173553719](0082644628099173553719)? (54*10?–45)/(99*5*11) PDGSep 04 2022PRP View
¬ 
   n ⩾ 40161 (PDG, September 5, 2022)
5(65)16/5/11 = [1028466483](0119375573921028466483)1 (56*1033–65)/(99*5*11) PDGSep 05 2022PRP View
5(65)11544/5/11 = [1028466483](0119375573921028466483)1049 (56*1023089–65)/(99*5*11) PDGSep 05 2022PRP View
5(65)?/5/11 = [1028466483](0119375573921028466483)? (56*10?–65)/(99*5*11) PDGSep 05 2022PRP View
¬ 
   n ⩾ 56821 (PDG, September 5, 2022)
5(75)30/52/11 = [209366391184573](0027548209366391184573)2 (57*10{61}–75)/(99*25*11) PDGSep 05 2022PRP View
5(75)?/52/11 = [209366391184573](0027548209366391184573)? (57*10?–75)/(99*25*11) PDGSep 05 2022PRP View
¬ 
   n ⩾ 30599 (PDG, September 5, 2022)
5(85)?/5/11 = [106519742883379247](0156106519742883379247)? (58*10?–85)/(99*5*11) PDGSep 05 2022PRP View
¬ 
   n ⩾ 94015 (PDG, September 5, 2022)
5(95)?/5/11 = [10835629](0174471992653810835629)? (59*10?–95)/(99*5*11) PDGSep 05 2022PRP View
¬ 
   n ⩾ 72317 (PDG, September 5, 2022)
6(16)?/24/11 = [35009182736455463728191](0009182736455463728191)? (61*10?–16)/(99*16*11) PDGSep 05 2022PRP View
¬ 
   n ⩾ 50039 (PDG, September 5, 2022)
6(56)?/23/11 = [746097337](0064279155188246097337)? (65*10?–56)/(99*8*11) PDGSep 05 2022PRP View
¬ 
   n ⩾ 1000001 (PDG, September 5, 2022)
6(76)?/22/11 = [15380835629](0174471992653810835629)? AC (67*10?–76)/(99*4*11) PDGSep 05 2022PRP View
¬ 
   n ⩾ 64367 (PDG, September 5, 2022)
7(17)734/11 = [6519742883379247](0156106519742883379247)66 (71*101469–17)/(99*11) PDGSep 05 2022PRP View
7(17)?/11 = [6519742883379247](0156106519742883379247)? (71*10?–17)/(99*11) PDGSep 05 2022PRP View
¬ 
   n ⩾ 87413 (PDG, September 5, 2022)
7(27)?/11 = [661157](0247933884297520661157)? (72*10?–27)/(99*11) PDGSep 05 2022PRP View
¬ 
   n ⩾ 1000001 (PDG, September 5, 2022)
7(37)1/11 = [67](0339761248852157943067)0 AC (73*10{3}–37)/(99*11) PDGSep 05 2022PRP View
¬ 
   n ⩾ 50303 (PDG, September 5, 2022)
7(47)?/11 = [6795224977](0431589613406795224977)? (74*10?–47)/(99*11) PDGSep 05 2022PRP View
¬ 
   n ⩾ 95925 (PDG, September 5, 2022)
7(57)343/11 = [6887](0523415977961432506887)31 (75*10687–57)/(99*11) PDGSep 05 2022PRP View
7(57)?/11 = [6887](0523415977961432506887)? (75*10?–57)/(99*11) PDGSep 05 2022PRP View
¬ 
   n ⩾ 1000001 (PDG, September 6, 2022)
7(67)?/11 = [69788797](0615243342516069788797)? AC (76*10?–67)/(99*11) PDGSep 06 2022PRP View
¬ 
   n ⩾ 52859 (PDG, September 6, 2022)
7(87)62/11 = [71625344352617](0798898071625344352617)5 (78*10125–87)/(99*11) PDGSep 06 2022PRP View
7(87)293/11 = [71625344352617](0798898071625344352617)26 (78*10{587}–87)/(99*11) PDGSep 06 2022PRP View
7(87)?/11 = [71625344352617](0798898071625344352617)? (78*10?–87)/(99*11) PDGSep 06 2022PRP View
¬ 
   n ⩾ 64215 (PDG, September 6, 2022)
7(97)?/11 = [725436179981634527](0890725436179981634527)? (79*10?–97)/(99*11) PDGSep 06 2022PRP View
¬ 
   n ⩾ 50121 (PDG, September 6, 2022)
8(18)2/2/11 = [3719](0082644628099173553719)0 (81*10{5}–18)/(99*2*11) PDGSep 06 2022PRP View
8(18)24/2/11 = [3719](0082644628099173553719)2 (81*1049–18)/(99*2*11) PDGSep 06 2022PRP View
8(18)?/2/11 = [3719](0082644628099173553719)? (81*10?–18)/(99*2*11) PDGSep 06 2022PRP View
¬ 
   n ⩾ 50259 (PDG, September 6, 2022)
8(38)24216/2/11 = [3810835629](0174471992653810835629)2201 (83*1048433–38)/(99*2*11) PDGSep 06 2022PRP View
8(38)?/2/11 = [3810835629](0174471992653810835629)? (83*10?–38)/(99*2*11) PDGSep 06 2022PRP View
¬ 
   n ⩾ 50471 (PDG, September 6, 2022)
8(58)?/2/11 = [39](0266299357208448117539)? (85*10?–58)/(99*2*11) PDGSep 06 2022PRP View
¬ 
   n ⩾ 62245 (PDG, September 6, 2022)
8(78)?/2/11 = [399449](0358126721763085399449)? (87*10?–78)/(99*2*11) PDGSep 06 2022PRP View
¬ 
   n ⩾ 63751 (PDG, September 6, 2022)
8(98)?/2/11 = [4086317722681359](0449954086317722681359)? (89*10?–98)/(99*2*11) PDGSep 06 2022PRP View
¬ 
   n ⩾ 70011 (PDG, September 6, 2022)
9(19)?/11 = [835629](0174471992653810835629)? (91*10?–19)/(99*11) PDGSep 06 2022PRP View
¬ 
   n ⩾ 88715 (PDG, September 7, 2022)
9(29)5/11 = [8448117539](0266299357208448117539)0 (92*10{11}–29)/(99*11) PDGSep 07 2022PRP View
9(29)10565/11 = [8448117539](0266299357208448117539)960 (92*1021131–29)/(99*11) PDGSep 07 2022PRP View
9(29)?/11 = [8448117539](0266299357208448117539)? (92*10?–29)/(99*11) PDGSep 07 2022PRP View
¬ 
   n ⩾ 40385 (PDG, September 7, 2022)
9(49)?/11 = [86317722681359](0449954086317722681359)? (94*10?–49)/(99*11) PDGSep 07 2022PRP View
¬ 
   n ⩾ 50327 (PDG, September 7, 2022)
9(59)?/11 = [872359963269](0541781450872359963269)? (95*10?–59)/(99*11) PDGSep 07 2022PRP View
¬ 
   n ⩾ 50889 (PDG, September 7, 2022)
9(79)166/11 = [89](0725436179981634527089)15 (97*10333–79)/(99*11) PDGSep 07 2022PRP View
9(79)?/11 = [89](0725436179981634527089)? (97*10?–79)/(99*11) PDGSep 07 2022PRP View
¬ 
   n ⩾ 72803 (PDG, September 7, 2022)
9(89)?/11 = [8999](0817263544536271808999)? (98*10?–89)/(99*11) PDGSep 07 2022PRP View

















Sources Revealed










[up TOP OF PAGE]


( © All rights reserved ) - Last modified : March 13, 2023.

Patrick De Geest - Belgium flag - Short Bio - Some Pictures
E-mail address : pdg@worldofnumbers.com