World!Of Numbers | |||
Palindromic Merlon Primes (PMP's) | |||
1 2 3 4 5 6 Palindromic Wing Primes Undulating Primes Plateau & Depression Primes Home Primes Circular Primes PMP-sorted |
121 | 141 | 151 | 171 | 181 |
---|---|---|---|---|
313 | 323 | 343 | 353 | 373 |
383 | 717 | 727 | 747 | 757 |
787 | 919 | 929 | 949 | 959 |
979 | 989 |
Palindromic Merlon Primes (or PMP's for short) are numbers that
are (probable) primes, palindromic in base 10, and consisting of one central digit
(hereby named as a merlon_digit) surrounded by two symmetrical crennelations
with same digits different from the central merlon_digit and finally bordered left
and right by that same central merlon_digit. E.g.
3223223 31111111111111111311111111111111113 |
From these examples you will understand the naming of these kind of palindromic primes Visualising merlons
In case one should discover more sources I will be most happy
to add them to the list. Just let me know.
PMP's sorted by length |
---|
( n = 2 * w + 3 )
|
|
[ February 4, 2023 ]
Chen Xinyao informs me that
https://www.alpertron.com.ar/MODFERM.HTM is the factorization of the PMPs 1(0^^w)1(0^^w)1 in base 2.
Following condition must be imposed that gcd(A,B) = 1 (in Factorization of ABB...BBABB...BBA), i.e. A and B are coprime, since if A and B have a common factor > 1, then we can divide this
factor from the number, e.g. factor 6999...9996999...9996 is equivalent to factor 2333...3332333...3332.
[ April 18, 2023 ]
Chen Xinyao informs me that
some PMPs have algebraic factors: (n=w+1)
2(3^^w)2(3^^w)2 3*(10^(2*n+1)-1)/9-10^(2*n)-10^n-1 = ((2^n*5^n-1)*(7*2^n*5^n+4))/3 = (1^^n) * (7(0^^(n-1)4) * 3
2(7^^w)2(7^^w)2 7*(10^(2*n+1)-1)/9-5*10^(2*n)-5*10^n-5 = ((2^n*5^(n+1)-13)*(2^n*5^(n+1)+4))/9 = 4(9^^(n-2))87 * 5(0^^(n-1))4 / 9
I have checked all combinations of PMP, only 2333...3332333...3332 and 2777...7772777...7772 have algebraic factorization.
Thus link to Kamada's pages factorization of (1^^n), factorization of 7(0^^n)4, factorization of 2*5(0^^n)4
Unfortunately, Kamada's page has no factorization of 4(9^^n)87 or any related numbers since it only has
(x^^n), (x^^n)y, x(y^^n), (x^^n)yx, xy(x^^n), x(y^^n)x, x(y^^n)z, and (x^^n)y(x^^n).
Also 5*10^n-13 (or 4(9^^(n-2))87) is already fully factored for all n<137,
see http://factordb.com/index.php?query=5*10%5En-13&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
[ February 3, 2024 ]
Patrick De Geest is always on the search for more or less beautiful patterns, curiosities and observations.
PATTERNS in the expansions of the Palindromic Merlon Numbers of type PMP545 (4*(10^(n–1))/9 + 10^(n-1) + 10^((n-1)/2) + 1) divided by a combination of its smallest factors 3, 5 & 37 with multiplicity. | |||
Divided by 3 | E.g. n = 33 | Alternations of the digits 1, 4 and 8 except for the last digit which is a 5. | 181481481481481484814814814814815 |
Divided by 5 | E.g. n = 33 | Strings of 8's sandwiched between 10, 90 and 9. Their lengths are defined by (n-5)/2 so in this example it is 14. Note that 10909 is a prime. | 10{88888888888888}90{88888888888888}9 |
Divided by 3 * 3 = 9 | E.g. n = 33 | The last ten digits constitute a pandigital number 4938271605 whereby the digits from 0 to 9 are intertwined and ascending from the right to the left → 4938271605 | 6049382716049382827160_4938271605 |
Divided by 3 * 5 = 15 | E.g. n = 33 | A string made of the digits 2, 6 and 9 squeezed between two 3's. Note it is not a palindrome. | 3_629629629629629696296296296296_3 |
Divided by 3 * 3 * 3 = 27 | E.g. n = 87 | Here also lurks a pandigital number at the end of the decimal expansion but now divided in five dispersed duo's. …90534979423868312757201646090535 | …90534979423868312757201646090535 |
Divided by 3 * 3 * 5 = 45 | E.g. n = 195 | All the ten digits from 0 to 9 appear at the start and the end of the decimal expansion. Adding up 1209876543 + 0987654321 gives 2197530864 which is also a pandigital number. And subtracting both numbers gives surprisingly 222222222 or a repdigit. | 1209876543_20987654320…098765432098765432_0987654321 |
Divided by 3 * 37 = 111 | E.g. n = 27 | Alternations of the digits 0, 4 and 9 except for the last digit which is a 5. | 4904904904904994994994995 |
Divided by 3 * 3 * 3 * 5 = 135 | E.g. n = 141 | Nothing spectacular found except that digits 4, 5, 6, 7, 8, 9 often appear as doubles. …0329218106 99 5 88 4 77 3 66 2 55 1 44 0329218107 Intersperced between these doubles we observe a descending sequence from digit 6 down to 0. | 40329218106…0329218106995884773662551440329218107 |
Divided by 5 * 37 = 185 | E.g. n = 51 | Alternations of the digits 2, 4 and 9 for the left part and 6 and 9 for the right side except for the last digit which is a 7. | 2942942942942942942942942996996996996996996996997 |
Divided by 3 * 3 * 37 = 333 | E.g. n = 51 | Digits 2 and 7 do not appear in the decimal expansion. | 1634968301634968301634968331664998331664998331665 |
Divided by 3 * 5 * 37 = 555 | E.g. n = 135 | Alternations of only the digits 0, 8 and 9. | 98098098098098098098…98998998998998998999 |
Divided by 3 * 3 * 3 * 37 = 999 | E.g. n = 195 | Occurence of triplets like 555, 666, 777, 888, 999. 555 happens only once at the very end of the decimal expansion. | …999443888332777221666110554999443888332777221666110555 |
Divided by 3 * 3 * 5 * 37 = 1665 | E.g. n = 141 | Ends with a triplet of the digits 3, 6 and 9. | …999666332999666332999666332_999666333 |
Divided by 3 * 3 * 3 * 3 * 37 = 2997 | E.g. n = 141 | I see a few triplets but nothing spectacular... Do you see more ? | 181663144626107589070552033514996477959440922403885366848329811292774 259073888703518333147962777592407222036851666481296110925740555370185 |
Divided by 3 * 3 * 3 * 5 * 37 = 4995 | E.g. n = 141 | Ends with a triplet of all the digits from 999 down to 111 separated from the rest by one zero. …10999888777666555444333222110{999}{888}{777}{666}{555}{444}{333}{222}{111} | …10999888777666555444333222110999888777666555444333222111 |
Divided by 3 * 3 * 3 * 3 * 5 * 37 = 14985 | E.g. n = 141 | Again, this is a case with triplets occurring for digits 9 down to 7 and 1 to 3 upwards. Inbetweeners 4,5,6 and 7 gather even together in quartets. 36332628925221517814110406702{999}295591{888}184480{777}073369665962258554851814{7777} 40703{6666}29592{5555}18481{4444}07370{333}296259{222}185148{111}074037 | 363326289252215178141104067029992955918881844807770733696659622585548 51814777740703666629592555518481444407370333296259222185148111074037 |
Can you reveal more intricate patterns? If so, just let me know and I'll add them also.
The reference table for Palindromic Merlon Primes | |||||
This collection is complete for probable primes up to 50000 digits and for proven primes up to 3500 digits. | PDG = Patrick De Geest | ||||
PMP | Formula blue exp = # of digits Accolades = prime exp | Who | When | Status | Output Logs |
¬ | n ⩾ 50011 (PDG, September 27, 2022) | ||||
---|---|---|---|---|---|
1(2)21(2)21 | 2*(10{7}1)/9 106 103 1 | PDG | Nov 12 2011 | PRIME | View |
1(2)41(2)41 | 2*(10{11}1)/9 1010 105 1 | PDG | Nov 12 2011 | PRIME | View |
1(2)111(2)111 | 2*(10251)/9 1024 1012 1 | PDG | Nov 12 2011 | PRIME | View |
1(2)23921(2)23921 | 2*(10{4787}1)/9 104786 102393 1 | PDG | Nov 12 2011 | RECORD PROVEN PRIME |
View |
1(2)188141(2)188141 | 2*(10376311)/9 1037630 1018815 1 | PDG | Sep 27 2022 | PROBABLE PRIME |
View |
¬ | n ⩾ 50191 (PDG, September 28, 2022) | ||||
1(4)441(4)441 | 4*(10911)/9 3*1090 3*1045 3 | PDG | Nov 12 2011 | PRIME | View |
1(4)641(4)641 | 4*(10{131}1)/9 3*10130 3*1065 3 | PDG | Nov 12 2011 | PRIME | View |
1(4)91491(4)91491 | 4*(10{18301}1)/9 3*1018300 3*109150 3 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
1(4)228261(4)228261 | 4*(10456551)/9 3*1045654 3*1022827 3 | PDG | Sep 28 2022 | PROBABLE PRIME |
View |
¬ | n ⩾ 53947 (PDG, September 28, 2022) | ||||
1(5)21(5)21 | 5*(10{7}1)/9 4*106 4*103 4 | PDG | Nov 12 2011 | PRIME | View |
1(5)81(5)81 | 5*(10{19}1)/9 4*1018 4*109 4 | PDG | Nov 12 2011 | PRIME | View |
1(5)321(5)321 | 5*(10{67}1)/9 4*1066 4*1033 4 | PDG | Nov 12 2011 | PRIME | View |
1(5)1281(5)1281 | 5*(102591)/9 4*10258 4*10129 4 | PDG | Nov 12 2011 | PRIME | View |
1(5)4941(5)4941 | 5*(10{991}1)/9 4*10990 4*10495 4 | PDG | Nov 12 2011 | PRIME | View |
1(5)42611(5)42611 | 5*(1085251)/9 4*108524 4*104262 4 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
1(5)137651(5)137651 | 5*(10275331)/9 4*1027532 4*1013766 4 | PDG | Sep 28 2022 | PROBABLE PRIME |
View |
¬ | n ⩾ 56095 (PDG, September 29, 2022) | ||||
1(7)41(7)41 | 7*(10{11}1)/9 6*1010 6*105 6 | PDG | Nov 12 2011 | PRIME | View |
1(7)221(7)221 | 7*(10{47}1)/9 6*1046 6*1023 6 | PDG | Nov 12 2011 | PRIME | View |
1(7)3161(7)3161 | 7*(106351)/9 6*10634 6*10317 6 | PDG | Nov 12 2011 | PRIME | View |
1(7)4421(7)4421 | 7*(10{887}1)/9 6*10886 6*10443 6 | PDG | Nov 12 2011 | PRIME | View |
¬ | n ⩾ 58103 (PDG, September 29, 2022) | ||||
1(8)11(8)11 | 8*(10{5}1)/9 7*104 7*102 7 | PDG | Nov 12 2011 | PRIME | View |
1(8)21(8)21 | 8*(10{7}1)/9 7*106 7*103 7 | PDG | Nov 12 2011 | PRIME | View |
1(8)1451(8)1451 | 8*(10{293}1)/9 7*10292 7*10146 7 | PDG | Nov 12 2011 | PRIME | View |
1(8)2541(8)2541 | 8*(105111)/9 7*10510 7*10255 7 | PDG | Nov 12 2011 | PRIME | View |
1(8)16271(8)16271 | 8*(10{3257}1)/9 7*103256 7*101628 7 | PDG | Nov 12 2011 | PRIME | View |
1(8)18131(8)18131 | 8*(1036291)/9 7*103628 7*101814 7 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
¬ | n ⩾ 53315 (PDG, September 30, 2022) | ||||
3(1)163(1)163 | (10351)/9 + 2*1034 + 2*1017 + 2 | PDG | Nov 12 2011 | PRIME | View |
3(1)433(1)433 | (10{89}1)/9 + 2*1088 + 2*1044 + 2 | PDG | Nov 12 2011 | PRIME | View |
3(1)863(1)863 | (101751)/9 + 2*10174 + 2*1087 + 2 | PDG | Nov 12 2011 | PRIME | View |
3(1)11533(1)11533 | (10{2309}1)/9 + 2*102308 + 2*101154 + 2 | PDG | Nov 12 2011 | PRIME | View |
¬ | n ⩾ 50821 (PDG, October 1, 2022) | ||||
3(2)13(2)13 | 2*(10{5}1)/9 + 104 + 102 + 1 | PDG | Nov 12 2011 | PRIME | View |
3(2)23(2)23 | 2*(10{7}1)/9 + 106 + 103 + 1 | PDG | Nov 12 2011 | PRIME | View |
3(2)53(2)53 | 2*(10{13}1)/9 + 1012 + 106 + 1 | PDG | Nov 12 2011 | PRIME | View |
3(2)19033(2)19033 | 2*(10{3809}1)/9 + 103808 + 101904 + 1 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
3(2)29533(2)29533 | 2*(1059091)/9 + 105908 + 102954 + 1 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
3(2)34133(2)34133 | 2*(10{6829}1)/9 + 106828 + 103414 + 1 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
¬ | n ⩾ 50189 (PDG, October 2, 2022) | ||||
3(4)23(4)23 | 4*(10{7}1)/9 106 103 1 | PDG | Dec 27 2012 | PRIME | View |
3(4)43(4)43 | 4*(10{11}1)/9 1010 105 1 | PDG | Nov 12 2011 | PRIME | View |
3(4)73(4)73 | 4*(10{17}1)/9 1016 108 1 | PDG | Nov 12 2011 | PRIME | View |
3(4)223(4)223 | 4*(10{47}1)/9 1046 1023 1 | PDG | Nov 12 2011 | PRIME | View |
3(4)263(4)263 | 4*(10551)/9 1054 1027 1 | PDG | Nov 12 2011 | PRIME | View |
3(4)1823(4)1823 | 4*(10{367}1)/9 10366 10183 1 | PDG | Nov 12 2011 | PRIME | View |
3(4)2053(4)2053 | 4*(104131)/9 10412 10206 1 | PDG | Nov 12 2011 | PRIME | View |
3(4)4763(4)4763 | 4*(109551)/9 10954 10477 1 | PDG | Nov 12 2011 | PRIME | View |
3(4)13193(4)13193 | 4*(1026411)/9 102640 101320 1 | PDG | Nov 12 2011 | PRIME | View |
3(4)127423(4)127423 | 4*(10254871)/9 1025486 1012743 1 | PDG | Oct 1 2022 | PROBABLE PRIME |
View |
3(4)172433(4)172433 | 4*(10344891)/9 1034488 1017244 1 | PDG | Oct 1 2022 | PROBABLE PRIME |
View |
¬ | n ⩾ 50657 (PDG, October 2, 2022) | ||||
3(5)13(5)13 | 5*(10{5}1)/9 2*104 2*102 2 | PDG | Nov 12 2011 | PRIME | View |
3(5)23(5)23 | 5*(10{7}1)/9 2*106 2*103 2 | PDG | Nov 12 2011 | PRIME | View |
3(5)173(5)173 | 5*(10{37}1)/9 2*1036 2*1018 2 | PDG | Nov 12 2011 | PRIME | View |
3(5)203(5)203 | 5*(10{43}1)/9 2*1042 2*1021 2 | PDG | Nov 12 2011 | PRIME | View |
3(5)263(5)263 | 5*(10551)/9 2*1054 2*1027 2 | PDG | Nov 12 2011 | PRIME | View |
3(5)1573(5)1573 | 5*(10{317}1)/9 2*10316 2*10158 2 | PDG | Nov 12 2011 | PRIME | View |
3(5)6143(5)6143 | 5*(10{1231}1)/9 2*101230 2*10615 2 | PDG | Nov 12 2011 | PRIME | View |
3(5)8333(5)8333 | 5*(10{1669}1)/9 2*101668 2*10834 2 | PDG | Nov 12 2011 | PRIME | View |
3(5)33613(5)33613 | 5*(1067251)/9 2*106724 2*103362 2 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
3(5)36313(5)36313 | 5*(1072651)/9 2*107264 2*103632 2 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
3(5)38443(5)38443 | 5*(10{7691}1)/9 2*107690 2*103845 2 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
¬ | n ⩾ 55429 (PDG, October 3, 2022) | ||||
3(7)23(7)23 | 7*(10{7}1)/9 4*106 4*103 4 | PDG | Nov 12 2011 | PRIME | View |
3(7)43(7)43 | 7*(10{11}1)/9 4*1010 4*105 4 | PDG | Nov 12 2011 | PRIME | View |
3(7)473(7)473 | 7*(10{97}1)/9 4*1096 4*1048 4 | PDG | Nov 12 2011 | PRIME | View |
3(7)593(7)593 | 7*(101211)/9 4*10120 4*1060 4 | PDG | Nov 12 2011 | PRIME | View |
3(7)703(7)703 | 7*(101431)/9 4*10142 4*1071 4 | PDG | Nov 12 2011 | PRIME | View |
3(7)1223(7)1223 | 7*(102471)/9 4*10246 4*10123 4 | PDG | Nov 12 2011 | PRIME | View |
3(7)1283(7)1283 | 7*(102591)/9 4*10258 4*10129 4 | PDG | Nov 12 2011 | PRIME | View |
3(7)60943(7)60943 | 7*(10121911)/9 4*1012190 4*106095 4 | PDG | Dec 4 2011 | PROBABLE PRIME |
View |
3(7)85243(7)85243 | 7*(10170511)/9 4*1017050 4*108525 4 | PDG | Dec 4 2011 | PROBABLE PRIME |
View |
3(7)189893(7)189893 | 7*(10379811)/9 4*1037980 4*1018990 4 | PDG | Oct 3 2022 | PROBABLE PRIME |
View |
¬ | n ⩾ 50417 (PDG, October 4, 2022) | ||||
3(8)83(8)83 | 8*(10{19}1)/9 5*1018 5*109 5 | PDG | Nov 12 2011 | PRIME | View |
3(8)103(8)103 | 8*(10{23}1)/9 5*1022 5*1011 5 | PDG | Nov 12 2011 | PRIME | View |
3(8)143(8)143 | 8*(10{31}1)/9 5*1030 5*1015 5 | PDG | Nov 12 2011 | PRIME | View |
3(8)673(8)673 | 8*(10{137}1)/9 5*10136 5*1068 5 | PDG | Nov 12 2011 | PRIME | View |
3(8)3643(8)3643 | 8*(107311)/9 5*10730 5*10365 5 | PDG | Nov 12 2011 | PRIME | View |
3(8)5783(8)5783 | 8*(1011591)/9 5*101158 5*10579 5 | PDG | Nov 12 2011 | PRIME | View |
3(8)8483(8)8483 | 8*(10{1699}1)/9 5*101698 5*10849 5 | PDG | Nov 12 2011 | PRIME | View |
3(8)30763(8)30763 | 8*(1061551)/9 5*106154 5*103077 5 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
3(8)78403(8)78403 | 8*(10{15683}1)/9 5*1015682 5*107841 5 | PDG | Dec 5 2011 | PROBABLE PRIME |
View |
3(8)142063(8)142063 | 8*(10284151)/9 5*1028414 5*1014207 5 | PDG | Oct 3 2022 | PROBABLE PRIME |
View |
3(8)193993(8)193993 | 8*(10388011)/9 5*1038800 5*1019400 5 | PDG | Oct 4 2022 | PROBABLE PRIME |
View |
3(8)233963(8)233963 | 8*(10467951)/9 5*1046794 5*1023397 5 | PDG | Oct 4 2022 | PROBABLE PRIME |
View |
¬ | n ⩾ 50681 (PDG, October 4, 2022) | ||||
7(1)557(1)557 | (10{113}1)/9 + 6*10112 + 6*1056 + 6 | PDG | Nov 12 2011 | PRIME | View |
¬ | n ⩾ 51193 (PDG, October 5, 2022) | ||||
7(2)17(2)17 | 2*(10{5}1)/9 + 5*104 + 5*102 + 5 | PDG | Nov 12 2011 | PRIME | View |
7(2)47(2)47 | 2*(10{11}1)/9 + 5*1010 + 5*105 + 5 | PDG | Nov 12 2011 | PRIME | View |
7(2)77(2)77 | 2*(10{17}1)/9 + 5*1016 + 5*108 + 5 | PDG | Nov 12 2011 | PRIME | View |
7(2)227(2)227 | 2*(10{47}1)/9 + 5*1046 + 5*1023 + 5 | PDG | Nov 12 2011 | PRIME | View |
7(2)297(2)297 | 2*(10{61}1)/9 + 5*1060 + 5*1030 + 5 | PDG | Nov 12 2011 | PRIME | View |
7(2)497(2)497 | 2*(10{101}1)/9 + 5*10100 + 5*1050 + 5 | PDG | Nov 12 2011 | PRIME | View |
7(2)737(2)737 | 2*(10{149}1)/9 + 5*10148 + 5*1074 + 5 | PDG | Nov 12 2011 | PRIME | View |
7(2)837(2)837 | 2*(101691)/9 + 5*10168 + 5*1084 + 5 | PDG | Nov 12 2011 | PRIME | View |
7(2)1187(2)1187 | 2*(10{239}1)/9 + 5*10238 + 5*10119 + 5 | PDG | Nov 12 2011 | PRIME | View |
7(2)2417(2)2417 | 2*(104851)/9 + 5*10484 + 5*10242 + 5 | PDG | Nov 12 2011 | PRIME | View |
¬ | n ⩾ 51035 (PDG, October 5, 2022) | ||||
7(4)17(4)17 | 4*(10{5}1)/9 + 3*104 + 3*102 + 3 | PDG | Nov 12 2011 | PRIME | View |
7(4)1217(4)1217 | 4*(102451)/9 + 3*10244 + 3*10122 + 3 | PDG | Nov 12 2011 | PRIME | View |
7(4)5207(4)5207 | 4*(1010431)/9 + 3*101042 + 3*10521 + 3 | PDG | Nov 12 2011 | PRIME | View |
7(4)12647(4)12647 | 4*(10{2531}1)/9 + 3*102530 + 3*101265 + 3 | PDG | Nov 12 2011 | PRIME | View |
7(4)17807(4)17807 | 4*(1035631)/9 + 3*103562 + 3*101781 + 3 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
¬ | n ⩾ 56255 (PDG, October 5, 2022) | ||||
7(5)262727(5)262727 | 5*(10525471)/9 + 2*1052546 + 2*1026273 + 2 | PDG | Nov 12 2011 | RECORD PROBABLE PRIME |
View |
¬ | n ⩾ 53665 (PDG, October 6, 2022) | ||||
7(8)17(8)17 | 8*(10{5}1)/9 104 102 1 | PDG | Nov 12 2011 | PRIME | View |
7(8)47(8)47 | 8*(10{11}1)/9 1010 105 1 | PDG | Nov 12 2011 | PRIME | View |
7(8)1277(8)1277 | 8*(10{257}1)/9 10256 10128 1 | PDG | Nov 12 2011 | PRIME | View |
7(8)3297(8)3297 | 8*(10{661}1)/9 10660 10330 1 | PDG | Nov 12 2011 | PRIME | View |
7(8)8037(8)8037 | 8*(10{1609}1)/9 101608 10804 1 | PDG | Nov 12 2011 | PRIME | View |
7(8)18407(8)18407 | 8*(1036831)/9 103682 101841 1 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
¬ | n ⩾ 50395 (PDG, October 7, 2022) | ||||
9(1)49(1)49 | (10{11}1)/9 + 8*1010 + 8*105 + 8 | PDG | Nov 12 2011 | PRIME | View |
9(1)79(1)79 | (10{17}1)/9 + 8*1016 + 8*108 + 8 | PDG | Nov 12 2011 | PRIME | View |
9(1)299(1)299 | (10{61}1)/9 + 8*1060 + 8*1030 + 8 | PDG | Nov 12 2011 | PRIME | View |
9(1)469(1)469 | (10951)/9 + 8*1094 + 8*1047 + 8 | PDG | Nov 12 2011 | PRIME | View |
9(1)589(1)589 | (101191)/9 + 8*10118 + 8*1059 + 8 | PDG | Nov 12 2011 | PRIME | View |
9(1)689(1)689 | (10{139}1)/9 + 8*10138 + 8*1069 + 8 | PDG | Nov 12 2011 | PRIME | View |
9(1)839(1)839 | (101691)/9 + 8*10168 + 8*1084 + 8 | PDG | Nov 12 2011 | PRIME | View |
9(1)9559(1)9559 | (10{1913}1)/9 + 8*101912 + 8*10956 + 8 | PDG | Nov 12 2011 | PRIME | View |
9(1)11609(1)11609 | (1023231)/9 + 8*102322 + 8*101161 + 8 | PDG | Nov 12 2011 | PRIME | View |
9(1)55049(1)55049 | (10{11011}1)/9 + 8*1011010 + 8*105505 + 8 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
9(1)62689(1)62689 | (10{12539}1)/9 + 8*1012538 + 8*106269 + 8 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
9(1)92909(1)92909 | (10{18583}1)/9 + 8*1018582 + 8*109291 + 8 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
9(1)217669(1)217669 | (10435351)/9 + 8*1043534 + 8*1021767 + 8 | PDG | Oct 6 2022 | PROBABLE PRIME |
View |
¬ | n ⩾ 52841 (PDG, October 7, 2022) | ||||
9(2)49(2)49 | 2*(10{11}1)/9 + 7*1010 + 7*105 + 7 | PDG | Nov 12 2011 | PRIME | View |
9(2)89(2)89 | 2*(10{19}1)/9 + 7*1018 + 7*109 + 7 | PDG | Nov 12 2011 | PRIME | View |
9(2)269(2)269 | 2*(10551)/9 + 7*1054 + 7*1027 + 7 | PDG | Nov 12 2011 | PRIME | View |
9(2)2029(2)2029 | 2*(104071)/9 + 7*10406 + 7*10203 + 7 | PDG | Nov 12 2011 | PRIME | View |
9(2)20689(2)20689 | 2*(10{4139}1)/9 + 7*104138 + 7*102069 + 7 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
9(2)63749(2)63749 | 2*(10127511)/9 + 7*1012750 + 7*106375 + 7 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
¬ | n ⩾ 50963 (PDG, October 8, 2022) | ||||
9(4)19(4)19 | 4*(10{5}1)/9 + 5*104 + 5*102 + 5 | PDG | Nov 12 2011 | PRIME | View |
9(4)49(4)49 | 4*(10{11}1)/9 + 5*1010 + 5*105 + 5 | PDG | Nov 12 2011 | PRIME | View |
9(4)79(4)79 | 4*(10{17}1)/9 + 5*1016 + 5*108 + 5 | PDG | Nov 12 2011 | PRIME | View |
9(4)209(4)209 | 4*(10{43}1)/9 + 5*1042 + 5*1021 + 5 | PDG | Nov 12 2011 | PRIME | View |
9(4)5099(4)5099 | 4*(10{1021}1)/9 + 5*101020 + 5*10510 + 5 | PDG | Nov 12 2011 | PRIME | View |
¬ | n ⩾ 50461 (PDG, October 8, 2022) | ||||
9(5)19(5)19 | 5*(10{5}1)/9 + 4*104 + 4*102 + 4 | PDG | Nov 12 2011 | PRIME | View |
9(5)389(5)389 | 5*(10{79}1)/9 + 4*1078 + 4*1039 + 4 | PDG | Nov 12 2011 | PRIME | View |
9(5)1739(5)1739 | 5*(10{349}1)/9 + 4*10348 + 4*10174 + 4 | PDG | Nov 12 2011 | PRIME | View |
9(5)14939(5)14939 | 5*(1029891)/9 + 4*102988 + 4*101494 + 4 | PDG | Nov 12 2011 | PRIME | View |
9(5)229909(5)229919 | 5*(10459831)/9 + 4*1045982 + 4*1022991 + 4 | PDG | Oct 8 2022 | PROBABLE PRIME |
View |
¬ | n ⩾ 56783 (PDG, October 8, 2022) | ||||
9(7)29(7)29 | 7*(10{7}1)/9 + 2*106 + 2*103 + 2 | PDG | Nov 12 2011 | PRIME | View |
9(7)409(7)409 | 7*(10{83}1)/9 + 2*1082 + 2*1041 + 2 | PDG | Nov 12 2011 | PRIME | View |
9(7)2989(7)2989 | 7*(10{599}1)/9 + 2*10598 + 2*10299 + 2 | PDG | Nov 12 2011 | PRIME | View |
¬ | n ⩾ 52507 (PDG, October 9, 2022) | ||||
9(8)29(8)29 | 8*(10{7}1)/9 + 106 + 103 + 1 | PDG | Nov 12 2011 | PRIME | View |
9(8)49(8)49 | 8*(10{11}1)/9 + 1010 + 105 + 1 | PDG | Nov 12 2011 | PRIME | View |
9(8)89(8)89 | 8*(10{19}1)/9 + 1018 + 109 + 1 | PDG | Nov 12 2011 | PRIME | View |
9(8)149(8)149 | 8*(10{31}1)/9 + 1030 + 1015 + 1 | PDG | Nov 12 2011 | PRIME | View |
9(8)329(8)329 | 8*(10{67}1)/9 + 1066 + 1033 + 1 | PDG | Nov 12 2011 | PRIME | View |
9(8)569(8)569 | 8*(101151)/9 + 10114 + 1057 + 1 | PDG | Nov 12 2011 | PRIME | View |
9(8)3829(8)3829 | 8*(107671)/9 + 10766 + 10383 + 1 | PDG | Nov 12 2011 | PRIME | View |
Click here to view some entries to the table about palindromes. |
All probable primes above 10000 digits are also
submitted to the PRP TOP records table maintained by Henri & Renaud Lifchitz.
See : http://www.primenumbers.net/prptop/prptop.php
[ TOP OF PAGE]