[ May 1, 2022 ]
Operations with nine- & pandigital factors creating palindromes
Alexandru Petrescu
Find all ninedigital/pandigital numbers having the following property :
Both sum and product of the prime factors (without multiplicity) are palindromic.
There are 8 solutions for the pandigitals and only one for the ninedigitals.
Note the two pandigital duplicates (#2 & #6) and (#7 & #8).
# | Ninedigital | Sum | Product |
1 | 749813526 | 2+3+7+11+17+263 = 303 | 2*3*7*11*17*263 = 2065602 |
|
# | Pandigital | Sum | Product |
1 | 1854906237 | 3+37+283 = 323 | 3*37*283 = 31413 |
2 | 1957860432 | 2+3+11+499+2477 = 2992 | 2*3*11*499*2477 = 81577518 |
3 | 2589361047 | 3+7+13+37+313 = 373 | 3*7*13*37*313 = 3161613 |
4 | 2943816507 | 3+43+61+197+211 = 515 | 3*43*61*197*211 = 327090723 |
5 | 3169540287 | 3+37+101+283 = 424 | 3*37*101*283 = 3172713 |
6 | 3915720864 | 2+3+11+499+2477 = 2992 | 2*3*11*499*2477 = 81577518 |
7 | 4357812096 | 2+3+11+17+613 = 646 | 2*3*11*17*613 = 687786 |
8 | 7130965248 | 2+3+11+17+613 = 646 | 2*3*11*17*613 = 687786 |
Here is some Pari/gp code to reproduce Alexandru's results.
{
for(n=1,10!, d=numtoperm(10, n+10!-1);
a=sum(i=1, #d, (d[i]-1)*10^(#d-i));
f=factor(a); sf=0; mf=1;
for(j=1,#f~, sf+=f[j,1]; mf*=f[j,1]);
dsf=digits(sf); dmf=digits(mf);
if(Vecrev(dsf)==dsf && Vecrev(dmf)==dmf,
print(a," ",f," sum = ",sf,", product = ",mf));
);
}
The pandigital 4357812096 (#7) appears also in wonplate 26.
It is the product of these two palindromes :
69696 * 62526 = 4357812096
|