World!Of Numbers |
|||||||
[ December 5, 2021 ] [ Last update November 4, 2022 ] Browsing the list of the factorization of the palindromic squares I noticed that a few of them are meta_ninedigital . What does that mean ?
562 10100101110100101 {BL=17} [102012042434245292542434240210201] {PL=33}
< 3^2 * 1122233456677789 > 574 10101100100110101 {BL=17} [102032223232444292444232322230201] {PL=33} < 3^2 * 1122344455567789 > 774 1000011011101100001 {BL=19} [1000022022323444349434443232202200001] {PL=37} < 3^2 * 111112334566788889 > 884 1011100001000011101 {BL=19} [1022323212022222449442222202123232201] {PL=37} < 3^2 * 112344444555556789 > 1153 100010010111010010001 {BL=21} [10002002122404324432923442340422120020001] {PL=41} < 3^2 * 11112223345667778889 > 1155 100010011010110010001 {BL=21} [10002002302242325422922452324220320020001] {PL=41} < 3^2 * 11112223445567778889 > 1221 100110010010010011001 {BL=21} [10022014104204304602920640340240141022001] {PL=41} < 3^2 * 11123334445556667889 > 1255 101001000111000100101 {BL=21} [10201202023422242232923224222432020210201] {PL=41} < 3^2 * 11222333345666677789 > 1279 101100000111000001101 {BL=21} [10221210022444200234943200244422001212201] {PL=41} < 3^2 * 11233333345666666789 > 1648 10000110100100101100001 {BL=23} [100002202014124054042292240450421410202200001] {PL=45} < 3^2 * 1111123344455566788889 > 1686 10001011000100011010001 {BL=23} [100020221024121422422292224224121420122020001] {PL=45} < 3^2 * 1111223444455556778889 > 1799 10100100001110000100101 {BL=23} [102012020032422224023292320422224230020210201] {PL=45} < 3^2 * 1122233333456666677789 > 1807 10100110000100001100101 {BL=23} [102012222014120044222292222440021410222210201] {PL=45} < 3^2 * 1122234444455555677789 > 1822 10101100000100000110101 {BL=23} [102032221212020222224292422222020212122230201] {PL=45} < 3^2 * 1122344444455555567789 > 1830 10110000100100100001101 {BL=23} [102212102024024032042292240230420420201212201] {PL=45} < 3^2 * 1123333344455566666789 > 2290 1000010011001001100100001 {BL=25} [1000020022102222341244029204421432222012200200001] {PL=49} < 3^2 * 3541 * 27961 * 1122233456677789 > = < 3^2 * 111112223444555677788889 > 2300 1000010101001001010100001 {BL=25} [1000020202104032241422409042241422304012020200001] {PL=49} < 3^2 *111112233444555667788889 > 2330 1000100001101011000010001 {BL=25} [1000200012202242203432229222343022422022100020001] {PL=49} < 3^2 * 111122222344556777778889 > 2511 1010010001001001000100101 {BL=25} [1020120202122042041224209024221402402212020210201] {PL=49} < 3^2 * 112223333444555666677789 > 2542 1011000001001001000001101 {BL=25} [1022121002024024023004229224003204204202001212201] {PL=49} < 3^2 * 112333333444555666666789 > I find the appearance of these factors (starting high up in the list) Some formal notation 1122233456677789 could be written as I wonder if these curious primes are plentiful or rare. With some trial and error I found these small Here is a not too long (!) meta_ninedigital PRP example Browsing the list of the factorization of the palindromic squares I also noticed that a few of them are octamanco . What does that mean ?
605 11001001110010011 {BL=17} [121022025422441494144224520220121] {PL=33}
< 3^2 * 1222333456667779 > 613 11010001110001011 {BL=17} [121220124442223494322244421022121] {PL=33} < 3^2 * 1223333456666779 > 909 1100011001001100011 {BL=19} [1210024202323442049402443232024200121] {PL=37} < 3^2 * 122223444555677779 > 1350 110110000010000011011 {BL=21} [12124212102202202424942420220220121242121] {PL=41} < 3^2 * 12234444445555556779 > 1359 111000010010010000111 {BL=21} [12321002222222320224942202322222220012321] {PL=41} < 3^2 * 12333334445556666679 > 1889 11001000001110000010011 {BL=23} [121022001024422220221494122022224420100220121] {PL=45} < 3^2 * 1222333333456666667779 > 2568 1100000001101011000000011 {BL=25} [1210000002422224201212249422121024222242000000121] {PL=49} < 3^2 * 122222222344556777777779 > 2627 1100101000001000001010011 {BL=25} [1210222210203200204222229222224020023020122220121] {PL=49} < 3^2 * 122233444444555555667779 > 2647 1101100000001000000011011 {BL=25} [1212421210002202200024249424200022022000121242121] {PL=49} < 3^2 * 122344444444555555556779 > 2656 1110000001001001000000111 {BL=25} [1232100002222222221002249422001222222222000012321] {PL=49} < 3^2 * 123333333444555666666679 > Some formal notation 1222333456667779 could be written as Generally with variables Now the question ! [ December 10, 2021 ] [Length] + [Meta_9digital primes]
[ December 11, 2021 ]
Problem 1. (AM9) (12234567899, 12344567789, 12345678899) have length 11. (DM9) 9876543211 The greatest ninedigital suffixed by 1. Has length 10. Problem 2. (AM9) 1223334444555556666667777777888888888999999999999 has length 49. (DM9) 9887776666555554444443333333222222222111111111111111 has length 52. If n = [ 1(A)2(B)3(C)4(D)5(D)6(C)7(B)8(A1)9(1) ] then 9n = [ 10(A1)10(B1)10(C1)10(D1)10(D1)10(C1)10(B1)10(A1)1 ] Here is his proof (in a broader framework!) |
We calculate 9n by iteration; summing the first two summands,
a3 = a2 + 6 * 10A+B * (10C 1) = 1 + 10A + 10A+B + 6 * 10A+B+C a4 = a3 + 5 * 10A+B+C * (10D 1) = 1 + 10A + 10A+B + 10A+B+C + 5 * 10A+B+C+D a5 = a4 + 4 * 10A+B+C+D * (10D 1) = 1 + 10A + 10A+B + 10A+B+C + 10A+B+C+D + 4 * 10A+B+C+2D a6 = a5 + 3 * 10A+B+C+2D * (10C 1) = 1 + 10A + 10A+B + 10A+B+C + 10A+B+C+D + 10A+B+C+2D + 3 * 10A+B+2C+2D a7 = a6 + 2 * 10A+B+2C+2D * (10B 1) = 1 + 10A + 10A+B + 10A+B+C + 10A+B+C+D + 10A+B+C+2D + 10A+B+2C+2D + 2 * 10A+2B+2C+2D a8 = a7 + 10A+2B+2C+2D * (10A 1) = 1 + 10A + 10A+B + 10A+B+C + 10A+B+C+D + 10A+B+C+2D + 10A+B+2C+2D + 10A+2B+2C+2D + 102A+2B+2C+2D So 9n = a8 |
which is surprisingly short! s=0;n=11;for(a=2,n,for(b=1,n,for(c=1,n,for(d=1,n,p=2*(a+b+c+d)+1;\ or in a slightly more readable layout default(parisizemax,"1G") ; { s=0;n=11; for(a=2,n, for(b=1,n, for(c=1,n, for(d=1,n, p=2*(a+b+c+d)+1; x=vector(p); x[1]=1; x[a+1]=1; x[a+b+1]=1; x[a+b+c+1]=1; x[a+b+c+d+1]=1; x[a+b+c+2*d+1]=1; x[a+b+2*c+2*d+1]=1; x[a+2*b+2*c+2*d+1]=1; x[p]=1; y=fromdigits(x); z=y/9; t=y^2; d1=digits(t); if(isprime(z)==1,s++; write("c:/pari/am9pal.txt",s,",",a,",",b,",",c,",",d,",",z)); ) ) ) ); printf("%.4g",100*s/(n^3*(n-1)));print("%"); } | |||
A000211 Prime Curios! Prime Puzzle Wikipedia 211 Le nombre 211 |
[ TOP OF PAGE]