[ January 16, 2005 ]
Sumas Palindromizadas con Factores de Corrección
Números Naturales del 1 al 100
Hugo Sánchez (email)
This is a new batch of palindromes !
Patrones Palindrómicos Infinitos con Factores de Corrección,
aplicados a la Sucesión de Números Naturales de 1 al 100
(1 al 9 y luego 10 al 100).
Sumatorias Generalizadas de la Secuencia de los Naturales.
Explicaciones Preliminares:
Parte I. Secuencia de Naturales con un Dígito.
a) | 9 S i=1 | (in) |
n = 2 : 11 + 22 + 33 + ... + 99 = 495
n = 3 : 111 + 222 + 333 + ... + 999 = 4995
n = 4 : 1111 + 2222 + 3333 + ... + 9999 = 49995
n = 20 : 11...11 + 22...22 + 33...33 + ... + 99...99 =
4_9999999999999999999_5
b) El patrón es claro : 4(9n-1)5 si se le resta 1,
se Palindromiza el resultado, así :
9 S i=1 | (in) 1 | = 4(9n-1)4 , n > 1 |
Parte II. Secuencia de los Naturales con dos Dígitos.
a) | 99 S i=10 | (in) |
n = 1 : 10 + 11 + 12 + 13 + ... + 98 + 99 = 4905
n = 2 : 1010 + 1111 + 1212 + 1313 + ... + 9898 + 9999 = 495405
n = 3 : 101010 + 111111 + 121212 + ... + 989898 + 999999 = 49545405
n = 20 : 10...10 + 11...11 + 12...12 + ... + 98...98 + 99...99 =
49_54545454545454545454545454545454545454_05 = 49(5419)05
b) El patrón es claro : 49(54n-1)05. Notar que
n = 2 : | 495405 + 535 10 | = 49594 = 49(542-2)594 |
n = 3 : | 49545405 + 535 10 | = 4954594 = 49(543-2)594 |
n = 20 : | 49(5419)05 + 535 10 | = 49(5420-2)594 |
Esto evidencia que se Palindromiza la Sumatoria así :
99 S (in) + 535 i=10 10 |
= 49(54n-2)594 , con n > 1 |
Parte III. Los Patrones con tres Dígitos (100 a 999)
en adelante (4, 5, 6, ...)
no son Palindromizables con Factores de Corrección.
Caso I : Sumatorias Generalizadas Unidigitales
1. | 2 S i=1 | (in) | = 3n , n ⩾ 1 |
2. | 3 S i=1 | (in) | = 6n , n ⩾ 1 |
3. | 4 S i=1 | (in) + 1 | = 1n+1 , n ⩾ 1 |
4. | 5 S i=1 | (in) 4 | = 1(6n-1)1 , n ⩾ 2 |
5. | 6 S i=1 | (in) + 1 | = 2(3n-1)2 , n ⩾ 1 |
6. | 7 S i=1 | (in) + 5 | = 3(1n-1)3 , n ⩾ 1 |
7. | 8 S i=1 | (in) 3 | = 3(9n-1)3 , n ⩾ 1 |
8. | 9 S i=1 | (in) 1 | = 4(6n-1)4 , n ⩾ 1 |
9. | 9 S i=2 | (in) | = 4(8n-1)4 , n ⩾ 2 |
10. | 8 S i=2 | (in) 2 | = 3(8n-1)3 , n ⩾ 1 |
11. | 7 S i=2 | (in) 5 | = 2(9n-1)2 , n ⩾ 1 |
12. | 6 S i=2 | (in) + 2 | = 2n+1 , n ⩾ 1 |
13. | 5 S i=2 | (in) 3 | = 1(5n-1)1 , n ⩾ 1 |
14. | 4 S i=2 | (in) | = 9n , n ⩾ 1 |
15. | 3 S i=2 | (in) | = 5n , n ⩾ 1 |
16. | 9 S i=3 | (in) + 2 | = 4(6n-1)4 , n ⩾ 1 |
17. | 8 S i=3 | (in) | = 3(6n-1)3 , n ⩾ 1 |
18. | 7 S i=3 | (in) 3 | = 2(7n-1)2 , n ⩾ 1 |
19. | 6 S i=3 | (in) 7 | = 1(9n-1)1 , n ⩾ 1 |
20. | 5 S i=3 | (in) 1 | = 1(3n-1)1 , n ⩾ 1 |
21. | 4 S i=3 | (in) | = 7n , n ⩾ 1 |
22. | 9 S i=4 | (in) + 5 | = 4(3n-1)4 , n ⩾ 2 |
23. | 8 S i=4 | (in) + 3 | = 3n+1 , n ⩾ 2 |
24. | 7 S i=4 | (in) | = 2(4n-1)2 , n ⩾ 2 |
25. | 6 S i=4 | (in) 4 | = 1(6n-1)1 , n ⩾ 2 |
26. | 5 S i=4 | (in) | = 9n , n ⩾ 1 |
27. | 9 S i=5 | (in) 2 | = 3(8n-1)3 , n ⩾ 2 |
28. | 8 S i=5 | (in) 4 | = 2(8n-1)2 , n ⩾ 2 |
29. | 7 S i=5 | (in) 7 | = 1(9n-1)1 , n ⩾ 2 |
30. | 6 S i=5 | (in) | = 1(2n-1)1 , n ⩾ 2 |
31. | 9 S i=6 | (in) + 3 | = 3n+1 , n ⩾ 2 |
32. | 8 S i=6 | (in) + 1 | = 2(3n-1)2 , n ⩾ 2 |
33. | 7 S i=6 | (in) 2 | = 1(4n-1)1 , n ⩾ 2 |
34. | 9 S i=7 | (in) 2 | = 2(6n-1)2 , n ⩾ 2 |
35. | 8 S i=7 | (in) 4 | = 1(6n-1)1 , n ⩾ 2 |
36. | 9 S i=8 | (in) 6 | = 1(8n-1)1 , n ⩾ 2 |
Caso II : Sumatorias Generalizadas Bidigitales
1 ) | 99 S (in) + 535 i=10 10 |
= 49(54n-2)594 , n ⩾ 2 |
2 ) | 98 S (in) + 434 i=10 10 |
= 48(54n-2)584 , n ⩾ 2 |
3 ) | 97 S (in) + 232 i=10 10 |
= 47(55n-2)574 , n ⩾ 2 |
4 ) | 96 S (in) 71 i=10 10 |
= 46(57n-2)564 , n ⩾ 2 |
5 ) | 95 S (in) + 525 i=10 10 |
= 45(60n-2)654 , n ⩾ 2 |
6 ) | 94 S (in) + 20 i=10 10 |
= 44(64n-2)644 , n ⩾ 2 |
7 ) | 93 S (in) 586 i=10 10 |
= 43(69n-2)634 , n ⩾ 2 |
8 ) | 92 S (in) 293 i=10 10 |
= 42(75n-2)724 , n ⩾ 2 |
9 ) | 91 S (in) 101 i=10 10 |
= 41(82n-2)814 , n ⩾ 2 |
10 ) | 90 S (in) 10 i=10 10 |
= 40(90n-2)904 , n ⩾ 2 |
11 ) | 89 S i=10 | (in) + 33 = 3(92.n)3 , n ⩾ 2 |
12 ) | 88 S (in) + 959 i=10 10 |
= 39(10n-2)193 , n ⩾ 2 [primes possible] |
13 ) | 87 S (in) + 747 i=10 10 |
= 38(21n-2)283 , n ⩾ 2 [primes possible] |
14 ) | 86 S i=10 | (in) + 77 = 37(32.(n-1))73 , n ⩾ 2 [primes possible] |
15 ) | 85 S (in) + 20 i=10 10 |
a ) = 36(46n-2)463 , n ⩾ 2 or b ) = 3(64n-1)63 , n ⩾ 1 [primes possible] |
16 ) | 84 S (in) + 505 i=10 10 |
= 35(60n-2)653 , n ⩾ 2 [primes possible] |
17 ) | 83 S (in) 201 i=10 10 |
= 34(75n-2)743 , n ⩾ 2 [primes possible] |
18 ) | 82 S (in) + 172 i=10 10 |
= 33(91n-2)933 , n ⩾ 2 [primes possible] |
19 ) | 81 S (in) 546 i=10 10 |
= 33(09n-2)033 , n ⩾ 2 |
20 ) | 80 S (in) 465 i=10 10 |
= 32(27n-2)223 , n ⩾ 2 [primes possible] |
21 ) | 79 S (in) 485 i=10 10 |
= 31(46n-2)413 , n ⩾ 2 [primes possible] |
22 ) | 78 S i=10 | (in) 33 = 30(62.(n-1))03 , n ⩾ 1 |
23 ) | 77 S (in) + 162 i=10 10 |
= 29(87n-2)892 , n ⩾ 2 |
24 ) | 76 S (in) + 939 i=10 10 |
= 29(10n-2)192 , n ⩾ 2 |
25 ) | 75 S (in) + 515 i=10 10 |
= 28(33n-2)382 , n ⩾ 2 |
26 ) | 74 S (in) 10 i=10 10 |
= 27(57n-2)572 , n ⩾ 2 |
27 ) | 73 S (in) + 364 i=10 10 |
= 26(82n-2)862 , n ⩾ 2 |
28 ) | 72 S (in) 264 i=10 10 |
= 26(09n-2)062 , n ⩾ 2 |
29 ) | 71 S (in) 91 i=10 10 |
= 25(36n-2)352 , n ⩾ 2 |
30 ) | 70 S (in) 20 i=10 10 |
= 24(64n-2)642 , n ⩾ 2 |
31 ) | 69 S (in) 50 i=10 10 |
= 23(93n-2)932 , n ⩾ 2 |
32 ) | 68 S (in) 81 i=10 10 |
= 23(24n-2)232 , n ⩾ 2 |
33a ) | 67 S (in) 313 i=10 10 |
= 22(55n-2)522 , n ⩾ 2 |
33b ) | 67 S i=10 | (in) 11 = 22(52.(n-1))22 , n ⩾ 1 |
34 ) | 66 S (in) 646 i=10 10 |
= 21(87n-2)812 , n ⩾ 2 |
35 ) | 65 S (in) + 20 i=10 10 |
= 21(21n-2)212 , n ⩾ 2 |
36a ) | 64 S (in) 515 i=10 10 |
= 20(55n-2)502 , n ⩾ 2 |
36b ) | 64 S i=10 | (in) 33 = 20(52.(n-1))02 , n ⩾ 1 |
37 ) | 63 S (in) + 839 i=10 10 |
= 19(90n-2)991 , n ⩾ 2 [primes possible] |
38 ) | 62 S (in) + 202 i=10 10 |
= 19(27n-2)291 , n ⩾ 2 [primes possible] |
39 ) | 61 S (in) + 364 i=10 10 |
= 18(64n-2)681 , n ⩾ 2 [primes possible] |
40 ) | 60 S (in) + 525 i=10 10 |
= 18(03n-2)081 , n ⩾ 2 [primes possible] |
41 ) | 59 S (in) + 525 i=10 10 |
= 17(42n-2)471 , n ⩾ 2 [primes possible] |
42 ) | 58 S (in) + 344 i=10 10 |
= 16(82n-2)861 , n ⩾ 2 [primes possible] |
43 ) | 57 S (in) + 202 i=10 10 |
= 16(24n-2)261 , n ⩾ 2 [primes possible] |
44a ) | 56 S (in) 141 i=10 10 |
= 15(66n-2)651 , n ⩾ 2 [primes possible] |
44b ) | 56 S i=10 | (in) = 15(62.(n-1))51 , n ⩾ 1 [primes possible] |
45 ) | 55 S (in) + 515 i=10 10 |
= 15(10n-2)151 , n ⩾ 2 [primes possible] |
46 ) | 54 S (in) 30 i=10 10 |
= 14(54n-2)541 , n ⩾ 2 [primes possible] |
47 ) | 53 S (in) 676 i=10 10 |
= 13(99n-2)931 , n ⩾ 2 [primes possible] |
48 ) | 52 S (in) 323 i=10 10 |
= 13(46n-2)431 , n ⩾ 2 [primes possible] |
49 ) | 51 S (in) 171 i=10 10 |
= 12(93n-2)921 , n ⩾ 2 [primes possible] |
50 ) | 50 S (in) 20 i=10 10 |
= 12(42n-2)421 , n ⩾ 2 [primes possible] |
51 ) | 49 S (in) 70 i=10 10 |
= 11(91n-2)911 , n ⩾ 2 [primes possible] |
52 ) | 48 S (in) 121 i=10 10 |
= 11(42n-2)411 , n ⩾ 2 [primes possible] |
53 ) | 47 S (in) 373 i=10 10 |
= 10(93n-2)901 , n ⩾ 2 [primes possible] |
54 ) | 46 S (in) 626 i=10 10 |
= 10(46n-2)401 , n ⩾ 2 [primes possible] |
55 ) | 45 S (in) i=10 10 |
= 92.n |
= 9(99n-2)999 , n ⩾ 2 |
56 ) | 44 S i=10 | (in) + 14 = 9(54n-1)59 , n ⩾ 1 [primes possible] |
57 ) | 43 S i=10 | (in) + 18 = 9(10n-1)19 , n ⩾ 1 [primes possible] |
58 ) | 42 S i=10 | (in) + 10 = 8(66n-1)68 , n ⩾ 1 |
59 ) | 41 S i=10 | (in) + 12 = 8(24n-1)28 , n ⩾ 1 |
60 ) | 40 S i=10 | (in) + 12 = 7(82n-1)87 , n ⩾ 1 [primes possible] |
61 ) | 39 S i=10 | (in) + 12 = 7(42n-1)47 , n ⩾ 1 [primes possible] |
62 ) | 38 S i=10 | (in) + 11 = 7(03n-1)07 , n ⩾ 1 [primes possible] |
63 ) | 37 S i=10 | (in) + 8 = 6(64n-1)66 , n ⩾ 1 |
64 ) | 36 S i=10 | (in) + 5 = 6(27n-1)26 , n ⩾ 1 |
65 ) | 35 S i=10 | (in) + 10 = 5(90n-1)95 , n ⩾ 1 |
66 ) | 34 S i=10 | (in) + 5 = 52.n+1 = 5(55n-1)55 , n ⩾ 1 |
67 ) | 33 S i=10 | (in) + 9 = 5(21n-1)25 , n ⩾ 1 |
68 ) | 32 S i=10 | (in) + 1 = 4(87n-1)84 , n ⩾ 1 |
69 ) | 31 S i=10 | (in) + 3 = 4(52.n-1)4 , n ⩾ 1 |
70 ) | 30 S i=10 | (in) + 4 = 4(24n) = (42n)4 = 4(24n-1)24 , n ⩾ 1 |
71 ) | 29 S i=10 | (in) + 3 = 3(93n) = (39n)3 = 3(93n-1)93 , n ⩾ 1 |
72 ) | 28 S i=10 | (in) + 2 = 3(64n-1)63 , n ⩾ 1 [primes possible] |
73 ) | 27 S i=10 | (in) = 3(36n-1)33 , n ⩾ 1 |
74 ) | 26 S i=10 | (in) 3 = 3(09n-1)03 , n ⩾ 1 |
75 ) | 25 S i=10 | (in) + 2 = 2(82n) = (28n)2 , n ⩾ 1 |
76 ) | 24 S i=10 | (in) 3 = 2(57n-1)52 , n ⩾ 1 |
77 ) | 23 S i=10 | (in) + 1 = 2(33n-1)32 = 2(32.n-1)2 , n ⩾ 1 |
78 ) | 22 S i=10 | (in) + 4 = 2(10n-1)12 , n ⩾ 1 |
79 ) | 21 S i=10 | (in) 5 = 1(87n-1)81 , n ⩾ 1 [primes possible] |
80 ) | 20 S i=10 | (in) 4 = 1(62.n-1)1 , n ⩾ 1 [primes possible] |
81 ) | 19 S i=10 | (in) 4 = 1(46n-1)41 , n ⩾ 1 [primes possible] |
82 ) | 18 S i=10 | (in) 5 = 1(27n-1)21 , n ⩾ 1 [primes possible] |
83 ) | 17 S i=10 | (in) 7 = 1(09n-1)01 , n ⩾ 1 [primes possible] |
84a ) | 16 S (in) 1 i=10 10 |
= (91n-1)9 |
= 9(19n-1)9 , n ⩾ 1 [primes possible] |
84b ) | 16 S i=10 | (in) + 9 = (91n-1)9 , n ⩾ 1 [primes possible] |
85a ) | 15 S (in) 5 i=10 10 |
= (75n-1)7 |
= 7(57n-1) , n ⩾ 1 [primes possible] |
85b ) | 15 S i=10 | (in) + 7 = (75n-1)7 , n ⩾ 1 [primes possible] |
86 ) | 14 S (in) i=10 10 |
= (60n-1)6 |
= 6(06n-1) , n ⩾ 1 |
87 ) | 13 S (in) 6 i=10 10 |
= 4(64n-1) |
= (46n-1)4 , n ⩾ 1 |
88 ) | 12 S i=10 | (in) = 32.n , n ⩾ 1 |
89 ) | 11 S (in) 1 i=10 10 |
= 2(12n-1) |
= (21n-1)2 , n ⩾ 1 |
Other Hugo Sánchez WONplates won84.htm won106.htm won153.htm
|