[ November 3, 2003 ]
Patrones Palindromicos con Multiples Operaciones Aritmeticas
Hugo Sanchez (email)
This plate will display a goodly number of palindromic patterns
obtained by various arithmetic operations. These patterns are very unique
and they are not like those that I have sent to you before.
Some contain correction factors in order to achieve palindrome-ness.
Palindromic schemes of the form aba[n] = aa[m]
Example : 363[7] = 192[10] = (3*63+3)[10] = 33[63]
363[7] = 33[63]. Siendo 63 = 7(7+6/3).
In general : aba[n] = aa[n(n+b/a)] if 'a divides b' and
'n > a' and 'n > b' and 'm = [n(n+b/a)]'.
Palindromic schemes of the form aba[n] = bb[m]
Example : 636[7] = 321[10] = (3*106+3)[10] = 33[106]
636[7] = 33[106]. Siendo 106 = (6/3)*(72 +1)+(7-1).
In general : aba[n] = bb[(a/b)(n2 +1)+(n-1)] if 'b divides a'.
Palindromes and Numerical Bases
General note : the following convention will be used : a "numerical base"
will be a number with subindex to the right put between square brackets.
Example : number 13 from "base 5" is written as (13)[5]
while a "numerical repetition" number is accompanied by a subindex
but this time without brackets.
Example : the repetition of five times the number 13 is 1313131313 = (13)5.
The Number of the Beast
666[n] = 66[n(n+1)] , n > 6
666n * 9 + 1 = 5(93.n1)5
666[6k] = 66[W] siendo : W = (2(10k 1)(2.10k +1))/9
equivalent to : 666[4k+2k] = 66[4k.10k+2k] , k > 1
Example : 666[65] = 666[66666] = 26666533338[10] =
(6 * 4444422222 + 6)[10] = 66[4444422222] =
66[45.105+25] = 66[(2(105 1)(2.105 +1))/9]
Palindromes of the form abax = ccy
1) aba[n] = aa[n(n+b/a)] if 'a divides b' and 'n > a,b' , no zeros
2) aba[n] = bb[(a/b)(n2+1)+(n+1)] if 'b divides a' and 'n > a,b' , no zeros
3) aaa[nk] = aa[(n(n(10k 1)+9)(10k 1))/81] if 'nk > a' and 'n > a' , no zeros
Operaciones Aritméticas Básicas con Palindrómicos Generalizados
a) (3n) * (2(0n)2) = (6n)0(6n)
Example with n = 5 : 33333 * 2000002 = 66666066666 |
b) (3n) * (2(0n)2(0n)2) = (6n)0(6n)0(6n)
Example with n = 4 : 3333 * 20000200002 = 66660666606666 |
c) | (2(1n))2 ((1n)2)2 (9n) | = 3(2n1)3 |
d) | (1n)0(6n)0(1n) 1(0n)6(0n)1 | = 1n |
f) (9n) * (1(0n)1) = (9n)0(9n) |
g) (2(0n)2)2 = 4(0n)8(0n)4 |
h) | (5(0n)5)2 + 494 + 1 5 + 5 | = 25(0n1)5(0n1)52 |
i) | (3n) * (6n) 8 3 * 6 8 | 5n1 | = (2n1)1(2n1) |
j) | (9n) * (3n) 7 9 ÷ 3 + 7 | 3n1 | = (3n1)2(3n1) |
k) | (6n) * (9n) 4 5 + 5 | + 3n1 | = (6n1)5(6n1) |
l) | (3n) * (6n) + 1n 9 5 + 5 | 6n1 | = (2n1)1(2n1) |
m) | (7n) * (9n) 3 5 + 5 | + 5n1 | = (7n1)6(7n1) |
n) | (3n)2 9 5 + 5 | 7n1 | = (1n1)0(1n1) |
o) | (9n)2 1 5 + 5 | + 9n1 | = (9n1)8(9n1) |
p) | (6n)2 6 5 + 5 | 1n1 | = (4n1)3(4n1) |
q) | (3n) * (6n) * (9n) 2 5 + 5 | 5.10n1 | = (2n1)1(5n1)1(2n1) |
r) | (2n) * (5n) 2 * 5 | = | (10n 1)2 (10 1)2 | = | (9n)2 92 |
n = 1 1
n = 2 121
n = 3 12321
n = 4 1234321
n = 5 123454321
n = 6 12345654321
n = 7 1234567654321
n = 8 123456787654321
n = 9 12345678987654321
( end of pattern ! )
s) | (3n)2 + (6n)2 5 5 + 5 | + 1n | = 52.n1 |
t) | (6n)2 + (9n)2 (1n) 5 | = 1(4n1)1(4n1)1 |
u) | (3n)2 + (6n)2 + (9n)2 + (1n) 6 | = 1(5n1)2(5n1)1 |
v) | (3n)3 + (6n)3 3 5 + 5 | 2(0n2)2 + 2 | = (3n1)2(3n1)2(3n1) |
w) | (9n)3 + (9n)2 + (9n) 9 5 + 5 | + 7(0n2)7 7 | = (9n1)8(0n1)8(9n1) |
x) | (9n)3 + 5(0n1)5 9 5 5 + 5 | = (9n1)7(0n1)7(9n1) |
y) | (6n) * (6n) 6 5 + 5 | 1n1 | = (4n1)3(4n1) |
z) | (3n) * (3n) 9 5 + 5 | 7n1 | = (1n1)0(1n1) |
Continuación de "Operaciones Aritméticas...
aa) | (3n) * (3n) 9 5 + 5 | 7n1 + 1(0n2)1 1 | = 12.n1 |
bb) (9n)2 + 8(9n2)8 = (9n1)88(9n1) |
cc) (3n)2 (1n1)00(1n1) = 8(7n2)8 |
dd) (6n)2 (4n1)33(4n1) = 2(1n2)2 |
ee) (3n) * (6n) 6(5n2)6 = (2n1)11(2n1) |
ff) (3n) * (9n) 4(3n2)4 = (3n1)22(3n1) |
gg) (6n) * (9n) + 2(3n2)2 = (6n1)55(6n1) |
hh) (6n) * (9n) + 1(3n1)1 + 1 = 62.n |
ii) (3n) * (6n) + 4n = 22.n |
jj) (3n) * (9n) + 6n = 32.n |
kk) (3n) * (6n) * (9n) + (6n) * (9n + 1) = 23.n |
ll) | (9(0n)9)2 1 9 + 1 | 9n + 9 | = 81(0n2)161(0n2)18 |
mm) (3(0n)3)2 + 9n + 1 = 9(0n1)181(0n1)9 |
nn) (3(0n)3)2 9n+2 1 = 9(0n)8(0n)9 |
oo) (2(0n)2) * (2(0n+1)2) * (2(0n+2)2) =
2 * (2(0n)222(0n1)222(0n)2) * 2 =
8(0n)888(0n1)888(0n)8 |
Miscelanea de Patrones
1) (6n) * (9n) + (6n) + (9n) = (6n) * (9n + 1) + 9n = (6n)(9n) |
2) (9n) * (9n) + (6n) + (9n) = (9n) * (9n + 1) + 6n = (9n)(6n) |
3) (6n) * 9 + (9n) * 6 77 = 11(9n2)11 , n >= 2 |
5) (6n) * 9 + 1 = 5(9n1)5 |
7) | [ A(0n)B ]2 [ XY(92.n)YX ] [ B(0n)A ]2 | = Palindrome
Palindrome equal to D Palindromico Monodigital
Palindrome equal to EE Palindromico Bidigital
"|" = absolute value
A, B : digits with A<>B , B < A
XY, YX : 'two distinct digit' numbers obtained from XY = A^2 B^2 1
YX the reverse of XY (ps. XY = '10' then YX = '01' or XY = '04' and YX = '40').
Examples A=6, B=5, n=3, XY=6^2 5^2 1=10, YX=01
600052 1099999901 500062 =
ps. note the above beautiful palindromic expression itself !!
3600600025 1099999901 2500600036 = EE
EE equal to 88 |
I. Operaciones Aritméticas con Factores de Corrección, que
generan Patrones Palindrómicos Infinitos. Continuación:
I.1) | (8n) * (9n) + 7n 9 5 + 5 | = (8n1)7(8n1) |
I.2) (9n + 9n)2 + 9n 9 1 = (3n + 6n + 9n)2 + 9n 9 1 = 3(9n1)2(9n1)3 |
I.3) | (9n * 3n + 6n)2 72.n 2 5 + 5 | = (12.n1)0(12.n1) |
I.4) | 3n * 6n * 9n 5(0n1)5 + 3 5 + 5 | = (2n1)1(5n1)1(2n1) |
I.5) (9n + 3n)2 + 5n 8 = (6n + 6n)2 + 5n 8 = 1(7n1)4(7n1)1 |
I.6) | (9n + 6n)2 + 5n+1 55 5 5 + 5 | = 2(72(n1))2 |
I.7) (3n)2 + (3n)2 + 3n + 1n = (22)n |
II. Patrones Similares:
II.1) | (3n)2 7n 2 5 + 5 | = (1n1)0(1n1) |
II.2) | (3n + 3n)2 1n+1 5 5 + 5 | = (4n1)3(4n1) |
II.3) | (3n + 3n + 3n)2 + 9n 9 1 5 + 5 | = (9n1)8(9n1) |
II.4) (3n + 3n + 3n + 3n)2 + 5n 5 3 = 1(7n1)9(7n1)1 |
II.5) | (3n + 3n + 3n + 3n + 3n)2 5 5 + 5 | + 5n 5 | = 2(72(n1))2 |
II.6) (3n + 3n + 3n + 3n + 3n + 3n)2 + 9n 9 1 = 3(9n1)2(9n1)3 |
II.7) | (3n + 3n + 3n + 3n + 3n + 3n + 3n)2 1 5 + 5 | 1n1 | = 5(4n2)33(4n2)5 |
II.8) | (6n)2 6 5 + 5 | 1n1 | = (4n1)3(4n1) |
II.9) (6n + 6n)2 + 5n 8 = 1(7n1)4(7n1)1 |
II.10) (6n + 6n + 6n)2 9n 9 3 = 3(9n1)0(9n1)3 |
II.11) | (9n)2 + 9n 9 1 5 + 5 | = (9n1)8(9n1) |
II.12) (9n + 9n)2 + 9n 9 1 = 3(9n1)2(9n1)3 |
II.13) (9n + 9n + 9n)2 + 9n+1 9 1 = 8(9n1)1(9n1)8 |
II.14) (9n + 9n + 9n + 9n)2 + 9n+1 66 + 2 = 15(9n2)77(9n2)51 |
II.15) | (9n + 9n + 9n + 9n + 9n)2 5 5 + 5 | + 9n 55 4 | = 24(9n2)5(9n2)42 |
Other Hugo Sánchez WONplates won84.htm won106.htm won162.htm
|