| [ November 3, 2003 ]Patrones Palindromicos con Multiples Operaciones Aritmeticas
 Hugo Sanchez (email)
 This plate will display a goodly number of palindromic patternsobtained by various arithmetic operations. These patterns are very unique
 and they are not like those that I have sent to you before.
 Some contain correction factors in order to achieve palindrome-ness.
 
  Palindromic schemes of the form aba[n] = aa[m] Example : 363[7] = 192[10] = (3*63+3)[10] = 33[63]
 363[7] = 33[63]. Siendo 63 = 7(7+6/3).
 In general : aba[n] = aa[n(n+b/a)] if 'a divides b' and
 'n > a' and 'n > b' and 'm = [n(n+b/a)]'.
  Palindromic schemes of the form aba[n] = bb[m] Example : 636[7] = 321[10] = (3*106+3)[10] = 33[106]
 636[7] = 33[106]. Siendo 106 = (6/3)*(72 +1)+(7-1).
 In general : aba[n] = bb[(a/b)(n2 +1)+(n-1)] if 'b divides a'.
 
 Palindromes and Numerical BasesGeneral note : the following convention will be used : a "numerical base"
 will be a number with subindex to the right put between square brackets.
 Example : number 13 from "base 5" is written as (13)[5]
 while a "numerical repetition" number is accompanied by a subindex
 but this time without brackets.
 Example : the repetition of five times the number 13 is 1313131313 = (13)5.
  The Number of the Beast
 666[n] = 66[n(n+1)] , n > 6 
 666n * 9 + 1 = 5(93.n1)5 
 666[6k] = 66[W]  siendo : W = (2(10k 1)(2.10k +1))/9equivalent to : 666[4k+2k] = 66[4k.10k+2k] , k > 1
 Example : 666[65] = 666[66666] = 26666533338[10] =
 (6 * 4444422222 + 6)[10] = 66[4444422222] =
 66[45.105+25] = 66[(2(105 1)(2.105 +1))/9]
  Palindromes of the form abax = ccy 1) aba[n] = aa[n(n+b/a)]  if 'a divides b' and 'n > a,b' , no zeros
 2) aba[n] = bb[(a/b)(n2+1)+(n+1)]  if 'b divides a' and 'n > a,b' , no zeros
 3) aaa[nk] = aa[(n(n(10k 1)+9)(10k 1))/81]  if 'nk > a' and 'n > a' , no zeros
 
 Operaciones Aritméticas Básicas con Palindrómicos Generalizados 
| a)   (3n) * (2(0n)2) = (6n)0(6n) Example with n = 5 : 33333 * 2000002 = 66666066666
 | 
 | b)   (3n) * (2(0n)2(0n)2) = (6n)0(6n)0(6n) Example with n = 4 : 3333 * 20000200002 = 66660666606666
 | 
 | c) | (2(1n))2  ((1n)2)2 (9n)
 | = 3(2n1)3
 | 
 | d) | (1n)0(6n)0(1n) 1(0n)6(0n)1
 | = 1n | 
 | f)   (9n) * (1(0n)1) = (9n)0(9n) | 
 | g)   (2(0n)2)2 = 4(0n)8(0n)4 | 
 | h) | (5(0n)5)2 + 494 + 1 5 + 5
 | = 25(0n1)5(0n1)52
 | 
 | i) | (3n) * (6n)  8 3 * 6  8
 |  5n1
 | = (2n1)1(2n1)
 | 
 | j) | (9n) * (3n)  7 9 ÷ 3 + 7
 |  3n1
 | = (3n1)2(3n1)
 | 
 | k) | (6n) * (9n)  4 5 + 5
 | + 3n1
 | = (6n1)5(6n1)
 | 
 | l) | (3n) * (6n) + 1n  9 5 + 5
 |  6n1
 | = (2n1)1(2n1)
 | 
 | m) | (7n) * (9n)  3 5 + 5
 | + 5n1
 | = (7n1)6(7n1)
 | 
 | n) | (3n)2  9 5 + 5
 |  7n1
 | = (1n1)0(1n1)
 | 
 | o) | (9n)2  1 5 + 5
 | + 9n1
 | = (9n1)8(9n1)
 | 
 | p) | (6n)2  6 5 + 5
 |  1n1
 | = (4n1)3(4n1)
 | 
 | q) | (3n) * (6n) * (9n)  2 5 + 5
 |  5.10n1 | = (2n1)1(5n1)1(2n1) | 
 | r) | (2n) * (5n) 2 * 5
 | = | (10n  1)2 (10  1)2
 | = | (9n)2 92
 | 
 n = 1  1 n = 2
  121 n = 3
  12321 n = 4
  1234321 n = 5
  123454321 n = 6
  12345654321 n = 7
  1234567654321 n = 8
  123456787654321 n = 9
  12345678987654321 ( end of pattern ! )
 | s) | (3n)2 + (6n)2  5 5 + 5
 | + 1n
 | = 52.n1
 | 
 | t) | (6n)2 + (9n)2  (1n)  5 | = 1(4n1)1(4n1)1 | 
 | u) | (3n)2 + (6n)2 + (9n)2 + (1n)  6 | = 1(5n1)2(5n1)1 | 
 | v) | (3n)3 + (6n)3  3 5 + 5
 |  2(0n2)2 + 2
 | = (3n1)2(3n1)2(3n1)
 | 
 | w) | (9n)3 + (9n)2 + (9n)  9 5 + 5
 | + 7(0n2)7  7
 | = (9n1)8(0n1)8(9n1)
 | 
 | x) | (9n)3 + 5(0n1)5  9  5 5 + 5
 | = (9n1)7(0n1)7(9n1)
 | 
 | y) | (6n) * (6n)  6 5 + 5
 |  1n1
 | = (4n1)3(4n1)
 | 
 | z) | (3n) * (3n)  9 5 + 5
 |  7n1
 | = (1n1)0(1n1) | 
 
 Continuación de "Operaciones Aritméticas... 
| aa) | (3n) * (3n)  9 5 + 5
 |  7n1 + 1(0n2)1  1
 | = 12.n1
 | 
 | bb)   (9n)2 + 8(9n2)8 = (9n1)88(9n1) | 
 | cc)   (3n)2  (1n1)00(1n1) = 8(7n2)8 | 
 | dd)   (6n)2  (4n1)33(4n1) = 2(1n2)2 | 
 | ee)   (3n) * (6n)  6(5n2)6 = (2n1)11(2n1) | 
 | ff)   (3n) * (9n)  4(3n2)4 = (3n1)22(3n1) | 
 | gg)   (6n) * (9n) + 2(3n2)2 = (6n1)55(6n1) | 
 | hh)   (6n) * (9n) + 1(3n1)1 + 1 = 62.n | 
 | ii)   (3n) * (6n) + 4n = 22.n | 
 | jj)  (3n) * (9n) + 6n = 32.n | 
 | kk)   (3n) * (6n) * (9n) + (6n) * (9n + 1) = 23.n | 
 | ll) | (9(0n)9)2 1 9 + 1
 |  9n + 9
 | = 81(0n2)161(0n2)18
 | 
 | mm)   (3(0n)3)2 + 9n + 1 = 9(0n1)181(0n1)9 | 
 | nn)   (3(0n)3)2  9n+2  1 = 9(0n)8(0n)9 | 
 | oo)   (2(0n)2) * (2(0n+1)2) * (2(0n+2)2) = 2 * (2(0n)222(0n1)222(0n)2) * 2 =
 8(0n)888(0n1)888(0n)8
 | 
 
 Miscelanea de Patrones 
| 1)   (6n) * (9n) + (6n) + (9n) = (6n) * (9n + 1) + 9n = (6n)(9n) | 
 | 2)   (9n) * (9n) + (6n) + (9n) = (9n) * (9n + 1) + 6n = (9n)(6n) | 
 | 3)   (6n) * 9 + (9n) * 6  77 = 11(9n2)11 , n >= 2 | 
 | 5)   (6n) * 9 + 1 = 5(9n1)5 | 
 | 7)    | [ A(0n)B ]2  [ XY(92.n)YX ]  [ B(0n)A ]2 | = Palindrome
Palindrome equal to D  Palindromico Monodigital
Palindrome equal to EE  Palindromico Bidigital
"|" = absolute value
A, B : digits with A<>B , B < A
XY, YX : 'two distinct digit' numbers obtained from XY = A^2  B^2  1
YX the reverse of XY (ps. XY = '10' then YX = '01' or XY = '04' and YX = '40').
 Examples A=6, B=5, n=3, XY=6^2  5^2  1=10, YX=01
600052  1099999901  500062 =
ps. note the above beautiful palindromic expression itself !!
3600600025  1099999901   2500600036 = EE
EE equal to 88
 | 
 
 I. Operaciones Aritméticas con Factores de Corrección, quegeneran Patrones Palindrómicos Infinitos. Continuación:
 
| I.1) | (8n) * (9n) + 7n  9 5 + 5
 | = (8n1)7(8n1)
 | 
 | I.2)   (9n + 9n)2 + 9n  9  1 = (3n + 6n + 9n)2 + 9n  9  1 = 3(9n1)2(9n1)3
 | 
 | I.3) | (9n * 3n + 6n)2  72.n  2 5 + 5
 | = (12.n1)0(12.n1)
 | 
 | I.4) | 3n * 6n * 9n  5(0n1)5 + 3 5 + 5
 | = (2n1)1(5n1)1(2n1)
 | 
 | I.5)   (9n + 3n)2 + 5n  8 = (6n + 6n)2 + 5n  8 = 1(7n1)4(7n1)1 | 
 | I.6) | (9n + 6n)2 + 5n+1  55  5 5 + 5
 | = 2(72(n1))2
 | 
 | I.7)   (3n)2 + (3n)2 + 3n + 1n = (22)n | 
 II. Patrones Similares: 
| II.1) | (3n)2  7n  2 5 + 5
 | = (1n1)0(1n1)
 | 
 | II.2) | (3n + 3n)2  1n+1  5 5 + 5
 | = (4n1)3(4n1)
 | 
 | II.3) | (3n + 3n + 3n)2 + 9n  9  1 5 + 5
 | = (9n1)8(9n1)
 | 
 | II.4)   (3n + 3n + 3n + 3n)2 + 5n  5  3 = 1(7n1)9(7n1)1 | 
 | II.5) | (3n + 3n + 3n + 3n + 3n)2  5 5 + 5
 | + 5n  5
 | = 2(72(n1))2
 | 
 | II.6)   (3n + 3n + 3n + 3n + 3n + 3n)2 + 9n  9  1 = 3(9n1)2(9n1)3 | 
 | II.7) | (3n + 3n + 3n + 3n + 3n + 3n + 3n)2  1 5 + 5
 |  1n1
 | = 5(4n2)33(4n2)5
 | 
 | II.8) | (6n)2  6 5 + 5
 |  1n1
 | = (4n1)3(4n1)
 | 
 | II.9)   (6n + 6n)2 + 5n  8 = 1(7n1)4(7n1)1 | 
 | II.10)   (6n + 6n + 6n)2  9n  9  3 = 3(9n1)0(9n1)3 | 
 | II.11) | (9n)2 + 9n  9  1 5 + 5
 | = (9n1)8(9n1)
 | 
 | II.12)   (9n + 9n)2 + 9n  9 1 = 3(9n1)2(9n1)3 | 
 | II.13)   (9n + 9n + 9n)2 + 9n+1  9 1 = 8(9n1)1(9n1)8 | 
 | II.14)   (9n + 9n + 9n + 9n)2 + 9n+1  66 + 2 = 15(9n2)77(9n2)51 | 
 | II.15) | (9n + 9n + 9n + 9n + 9n)2  5 5 + 5
 | + 9n  55  4
 | = 24(9n2)5(9n2)42
 | 
 
  Other Hugo Sánchez WONplates 
  won84.htm  won106.htm  won162.htm 
 
 
 |