This page is the continuation of the topic started in WONplate 78.
Remarkable progress was made by Roberto Botrugno from Italy.
Please read on for a detailed explanation of his method
and enjoy the larger solutions he discovered using his algorithm.
LENGTH 2/3 95 | |||
---|---|---|---|
+ 5 x + 19 = | 7 x 17 = | ||
119 | |||
+ 7 x + 17 = | 11 x 13 = | ||
143 | |||
SOPF = 24 This triplet has been found [ September, 2000 ] by Patrick De Geest |
LENGTH 6 174191 | |||
---|---|---|---|
+ 373 x + 467 = | 383 x 457 = | ||
175031 | |||
+ 383 x + 457 = | 397 x 443 = | ||
175871 | |||
SOPF = 840 This triplet has been found [ September, 2000 ] by Patrick De Geest |
LENGTH 9 298687992 | |||
---|---|---|---|
+ 2 . 2 . 2 . 3 . 179 . 251 . 277 = | 2 . 2 . 17 . 53 . 179 . 463 = | ||
298688708 | |||
+ 2 . 2 . 17 . 53 . 179 . 463 = | 2 . 2 . 2 . 2 . 11 . 19 . 179 . 499 = | ||
298689424 | |||
SOPF = 716 This triplet has been found [ September, 2000 ] by Patrick De Geest |
Despite the extraordinary efforts of Roberto Botrugno The following triplet is the smallest one whereby the terms have exactly two prime factors " I have verified every possible combination between sopf_840 and sopf_99588340320 Definition of P-sopf and F_sopf.
( please take a look at his remarkable solutions of up to length 62 !! )
the FOURTH triplet still hasn't been determined.
immediately followed by his record triplet with terms of length 102 !
In the words of Roberto Botrugno :
(my smallest solution) and there aren't any other P_sopf solutions.
I don't know if there is a F_sopf."
F_sopf is a number that creates more than 2 factors numbers in every term (sopf_716).
P_sopf is a number that creates only 2 prime factors for every term (sopf_24, sopf_840, ...).
At the moment to find P_sopf is easier for me than to find F_sopf
so I'll work on the F_sopf ehehe :-)
Read on for a more detailed explanation of his P_sopf algorithm
LENGTH 22 2479459309123932072479 | |||
---|---|---|---|
+ 49785637921 x + 49802702399 = | 49785643759 x 49802696561 = | ||
2479459309223520412799 | |||
+ 49785643759 x + 49802696561 = | 49785649601 x 49802690719 = | ||
2479459309323108753119 | |||
SOPF = 99588340320 Triplet found on [ October 13, 2000 ] by Roberto Botrugno |
[RECORD] LENGTH 102 640000028235486939877676616625399472546557165146838/ 039766449055866620240288557497048899726433358934239 | |||
---|---|---|---|
+ 80000001764717913735538026/ 1415804098210232705451361 + 80000001764717914821305088/ 7468143253234671888129599 = | = 80000001764717914821305088/ 7468143105873410858968081 80000001764717913735538026/ 1415804245571493734612879 | ||
640000028235486939877676616625399472546557165146839/ 639766484350224905808719706380996251171337952515199 | |||
+ 80000001764717914821305088/ 7468143105873410858968081 + 80000001764717913735538026/ 1415804245571493734612879 = | = 80000001764717913735538026/ 1415804392932754763774401 80000001764717914821305088/ 7468142958512149829806559 | ||
640000028235486939877676616625399472546557165146841/ 239766519644583191377150855264943602616242546096159 | |||
SOPF = 1600000035294358285568431148883947351444904593580960 Triplet submitted on [ January 13, 2002 ] by Roberto Botrugno |
Roberto Botrugno made a connection with Puzzle 97 of PP&P [ January 13, 2002 ] Note that if Example Maybe four consecutive numbers with the same sopf create a quadrisopf (ps. quadrisopf of the form P_sopf is impossible because there doesn't |
Here is Roberto Botrugno's method for discovering these huge P_sopf solutions
First example consider sopf_24 (95, 119, 143). Note that : 95 + 24 + 24 = 143 95 + 24 + 24 + 1 = 144 95 + 49 = 12^2 95 + 7^2 = 12^2 119 + 24 = 143 119 + 24 + 1 = 144 119 + 25 = 12^2 119 + 5^2 = 12^2 143 + 1 = 144 143 + 1 = 12^2 143 + 1^2 = 12^2 Rewrite (95, 119, 143) as follows (12^2-7^2, 12^2-5^2, 12^2-1^2) Note that 1^2, 5^2 and 7^2 are squares in arithmetic progression (24). a^2 - b^2 = (a+b)(a-b) (12+7)(12-7) = 95, (12+5)(12-5) = 119, (12+1)(12-1) = 143. sopf_((12+7)+(12-7)) = sopf_((12+5)+(12-5)) = sopf_((12+1)+(12-1)) = 24 if and only if 12+-7, 12+-5 and 12+-1 are all primes. Counterexample consider 60^2-17^2, 60^2-13^2 and 60^2-7^2 => 77 * 43, 47 * 73 , 67 * 53. giving 77 * 43 = 3311 47 * 73 = 3431 67 * 53 = 3551 and 3551 - 3431 = 120 3431 - 3311 = 120 but, sopf_(77 * 43) = 61 because 77 is composite. sopf_(47 * 73) = 120 and sopf_(67 * 53) = 120 because 47 and 67 are all prime. 17^2, 13^2 and 7^2 are square numbers in arithmetic progression (120). Second example consider sopf_840 (174191, 175031, 175871) These triplet terms can be expressed as a difference of 2 squares : 174191 = 420^2 - 47^2 175031 = 420^2 - 37^2 175871 = 420^2 - 23^2 420+-47=373,467 420+-37=383,457 420+-23=397,443 sopf_(467 * 373) = sopf_(457 * 383) = sopf_(443 * 397) = 840 because all six resulting numbers are prime. 47^2, 37^2 and 23^2 are in arithmetic progression (840). In general the problem is to find 3 square numbers in arithmetic progression so that a^2-b^2=k , b^2-c^2=k , (e.g. 47^2-37^2=840, 37^2-23^2=840) and (k/2)+-a, (k/2)+-b, (k/2)+-c are prime. Consider 3 integers a,b,c. If a^2-b^2=k and b^2-c^2=k then a^2, b^2 and c^2 are 3 square numbers in arithmetic progression with difference k. If k/2+-a, k/2+-b and k/2+-c are all primes then (k/2)^2-a^2,(k/2)^2-b^2 and(k/2)^2-c^2 are 3 numbers in arithmetic progression with difference k having the same sopf = k. |
Enjoy the following P_sopf solutions kindly sent to me by Roberto !
It is not an exhaustive list. Roberto has in the mean time found many more triplets.
If you want an up_to_date list please contact Roberto himself.
LENGTH 37 4478902218446180230475773337554877471 | |||
---|---|---|---|
+ 2116340668031034373 x + 2116342744863087827 = | 2116340668033072423 x 2116342744861049777 = | ||
4478902218446180234708456750448999671 | |||
+ 2116340668033072423 x + 2116342744861049777 = | 2116340668035110477 x 2116342744859011723 = | ||
4478902218446180238941140163343121871 | |||
SOPF = 4232683412894122200 Triplet found on [ October 14, 2000 ] by Roberto Botrugno |
LENGTH 41 59336364903335477410849865182584799047599 | |||
---|---|---|---|
+ 243590543603140562401 x + 243590592744875609999 = | 243590543603150476199 x 243590592744865696201 = | ||
59336364903335477411337046318932815219999 | |||
+ 243590543603150476199 x + 243590592744865696201 = | 243590543603160390001 x 243590592744855782399 = | ||
59336364903335477411824227455280831392399 | |||
SOPF = 487181136348016172400 Triplet found on [ October 12, 2000 ] by Roberto Botrugno |
LENGTH 42 119883596739565730384906393185208734423871 | |||
---|---|---|---|
+ 346242138177475941043 x + 346242076052904028997 = | 346242076052915175703 x 346242138177464794337 = | ||
119883596739565730385598877399439114393911 | |||
+ 346242076052915175703 x + 346242138177464794337 = | 346242076052926322413 x 346242138177453647627 = | ||
119883596739565730386291361613669494363951 | |||
SOPF = 692484214230379970040 Triplet found on [ October 17, 2000 ] by Roberto Botrugno |
LENGTH 44 99861850740473507956819908315455767890016079 | |||
---|---|---|---|
+ 9993090441989232208399 x + 9993089857455040880321 = | 9993089857455075071959 x 9993090441989198016761 = | ||
99861850740473507956839894495755212163104799 | |||
+ 9993089857455075071959 x + 9993090441989198016761 = | 9993089857455109263601 x 9993090441989163825119 = | ||
99861850740473507956859880676054656436193519 | |||
SOPF = 19986180299444273088720 Triplet found on [ October 17, 2000 ] by Roberto Botrugno |
LENGTH 45 383709604779964076470710078188419776920148431 | |||
---|---|---|---|
+ 19588507414145606823347 x + 19588506498605032320373 = | 19588506498605117902637 x 19588507414145521241083 = | ||
383709604779964076470749255202332527559292151 | |||
+ 19588506498605117902637 x + 19588507414145521241083 = | 19588506498605075111503 x 19588507414145564032217 = | ||
383709604779964076470788432216245278198435871 | |||
SOPF = 39177013912750639143720 Triplet found on [ October 17, 2000 ] by Roberto Botrugno |
LENGTH 45 bis 823681257750517489279343257354195600449721871 | |||
---|---|---|---|
+ 28699848286115875767923 x + 28699847105079985106677 = | 28699847105080033707823 x 28699848286115827166777 = | ||
823681257750517489279400657049586796310596471 | |||
+ 28699847105080033707823 x + 28699848286115827166777 = | 28699847105080082308973 x 28699848286115778565627 = | ||
823681257750517489279458056744977992171471071 | |||
SOPF = 57399695391195860874600 Triplet found on [ October 17, 2000 ] by Roberto Botrugno |
LENGTH 47 13553461936419768731101648367275660004006623871 | |||
---|---|---|---|
+ 116419338110720381869043 x + 116419335106765299516997 = | 116419335106765377027703 x 116419338110720304358337 = | ||
13553461936419768731101881205948877489688009911 | |||
+ 116419335106765377027703 x + 116419338110720304358337 = | 116419335106765454538413 x 116419338110720226847627 = | ||
13553461936419768731102114044622094975369395951 | |||
SOPF = 232838673217485681386040 Triplet found on [ October 19, 2000 ] by Roberto Botrugno |
LENGTH 47 bis 22315993469127892289058153741682936533594082991 | |||
---|---|---|---|
+ 149385387501667542023567 x + 149385383954496793627873 = | 149385383954496877855783 x 149385387501667457795657 = | ||
22315993469127892289058452512454392697929734431 | |||
+ 149385383954496877855783 x + 149385387501667457795657 = | 149385387501667373567743 x 149385383954496962083697 = | ||
22315993469127892289058751283225848862265385871 | |||
SOPF = 298770771456164335651440 Triplet found on [ October 19, 2000 ] by Roberto Botrugno |
LENGTH 47 ter 49134295914902317212587830132553245219420795871 | |||
---|---|---|---|
+ 221662574508635370458003 x + 221662569893990736829957 = | 221662569893990832899143 x 221662574508635274388817 = | ||
49134295914902317212588273457697647845528083831 | |||
+ 221662569893990832899143 x + 221662574508635274388817 = | 221662574508635178319627 x 221662569893990928968333 = | ||
49134295914902317212588716782842050471635371791 | |||
SOPF = 443325144402626107287960 Triplet found on [ October 19, 2000 ] by Roberto Botrugno |
LENGTH 47 quater 98562853422203619186223138484174649117621985871 | |||
---|---|---|---|
+ 313947217298291184667663 x + 313947211478405726881217 = | 313947211478405834768983 x 313947217298291076779897 = | ||
98562853422203619186223766378603425814533534751 | |||
+ 313947211478405834768983 x + 313947217298291076779897 = | 313947211478405942656753 x 313947217298290968892127 = | ||
98562853422203619186224394273032202511445083631 | |||
SOPF = 627894428776696911548880 Triplet found on [ October 22, 2000 ] by Roberto Botrugno |
LENGTH 48 187135634625938245066744006675771205620668235871 | |||
---|---|---|---|
+ 432591768002400607001663 x + 432591760795826707125217 = | 432591760795826827179983 x 432591768002400486946897 = | ||
187135634625938245066744871859300003847982362751 | |||
+ 432591760795826827179983 x + 432591768002400486946897 = | 432591760795826947234753 x 432591768002400366892127 = | ||
187135634625938245066745737042828802075296489631 | |||
SOPF = 865183528798227314126880 Triplet found on [ October 22, 2000 ] by Roberto Botrugno |
LENGTH 48 bis 351659918093807217712934197036534564651474632911 | |||
---|---|---|---|
+ 593009210187726022205107 x + 593009201294671223104373 = | 593009210187725888840537 x 593009201294671356468943 = | ||
351659918093807217712935383054946047048719942391 | |||
+ 593009210187725888840537 x + 593009201294671356468943 = | 593009201294671489833517 x 593009210187725755475963 = | ||
351659918093807217712936569073357529445965251871 | |||
SOPF = 1186018411482397245309480 Triplet found on [ October 24, 2000 ] by Roberto Botrugno |
LENGTH 48 ter 941182701119008654205114994468293415076455901871 | |||
---|---|---|---|
+ 970145717455670788334483 x + 970145705108484848322037 = | 970145705108485005466463 x 970145717455670631190057 = | ||
941182701119008654205116934759715979232092558391 | |||
+ 970145705108485005466463 x + 970145717455670631190057 = | 970145705108485162610893 x 970145717455670474045627 = | ||
941182701119008654205118875051138543387729214911 | |||
SOPF = 1940291422564155636656520 Triplet found on [ October 24, 2000 ] by Roberto Botrugno |
LENGTH 49 7380882364209115513494986841272831417254107717599 | |||
---|---|---|---|
+ 2716777950229649168359999 x + 2716777925698789524642401 = | 2716777950229648946861201 x 2716777925698789746141199 = | ||
7380882364209115513494992274828707345692800719999 | |||
+ 2716777950229648946861201 x + 2716777925698789746141199 = | 2716777925698789967640001 x 2716777950229648725362399 = | ||
7380882364209115513494997708384583274131493722399 | |||
SOPF = 5433555875928438693002400 Triplet found on [ October 24, 2000 ] by Roberto Botrugno |
LENGTH 50 20601686763454138026062787699129695005616575151951 | |||
---|---|---|---|
+ 4538908119826166823233587 x + 4538908085287073587552373 = | 4538908085287073850379663 x 4538908119826166560406297 = | ||
20601686763454138026062796776945900118856985937911 | |||
+ 4538908085287073850379663 x + 4538908119826166560406297 = | 4538908085287074113206957 x 4538908119826166297579003 = | ||
20601686763454138026062805854762105232097396723871 | |||
SOPF = 9077816205113240410785960 Triplet found on [ October 24, 2000 ] by Roberto Botrugno |
LENGTH 50 bis 23265215523925629946132294310500868125028601315119 | |||
---|---|---|---|
+ 4823402916760346524442899 x + 4823402880792671546689781 = | 4823402880792671814897439 x 4823402916760346256235241 = | ||
23265215523925629946132303957306665678046672447799 | |||
+ 4823402880792671814897439 x + 4823402916760346256235241 = | 4823402880792672083105101 x 4823402916760345988027579 = | ||
23265215523925629946132313604112463231064743580479 | |||
SOPF = 9646805797553018071132680 Triplet found on [ October 24, 2000 ] by Roberto Botrugno |
LENGTH 53 14935926281825707858033173425141254860809482730279471 | |||
---|---|---|---|
+ 122212627497103856553949327 x + 122212627186823662368971873 = | 122212627186823663156728423 x 122212627497103855766192777 = | ||
14935926281825707858033173669566509544737001653200671 | |||
+ 122212627186823663156728423 x + 122212627497103855766192777 = | 122212627186823663944484977 x 122212627497103854978436223 = | ||
14935926281825707858033173913991764228664520576121871 | |||
SOPF = 244425254683927518922921200 Triplet found on [ October 19, 2000 ] by Roberto Botrugno |
LENGTH 54 197738286030718005636905634464690868982085150678971871 | |||
---|---|---|---|
+ 444677733147410502428879423 x + 444677732413392144559918177 = | 444677732413392145771543823 x 444677733147410501217253777 = | ||
197738286030718005636905635354046334542887797667769471 | |||
+ 444677732413392145771543823 x + 444677733147410501217253777 = | 444677732413392146983169473 x 444677733147410500005628127 = | ||
197738286030718005636905636243401800103690444656567071 | |||
SOPF = 889355465560802646988797600 Triplet found on [ November 1, 2000 ] by Roberto Botrugno |
[RECORD] LENGTH 62 64485918110472470752875104339248862702744083677393375856611071 | |||
---|---|---|---|
+ 8030312453847311561830726434373 x + 8030312454352552222564048871027 = | 8030312454352552222532260802177 x 8030312453847311561862514503223 = | ||
64485918110472470752875104339264923327652283541177770631916471 | |||
+ 8030312454352552222532260802177 x + 8030312453847311561862514503223 = | 8030312453847311561894302572077 x 8030312454352552222500472733323 = | ||
64485918110472470752875104339280983952560483404962165407221871 | |||
SOPF = 16060624908199863784394775305400 Triplet found on [ June 10, 2001 ] by Roberto Botrugno |
Roberto Botrugno (email) from Italy.
[ TOP OF PAGE]