Some beautiful patterns resulting in palindromes
After an exercice on Sloane's integer sequences A048611 and A048612 [ June 27, 1999 ]
originally submitted by Felice Russo with description
[ Least solutions for 'Difference between two squares is a repunit of length n' ]
I discovered that some beautiful patterns resulting in palindromes could be constructed.
62 52 = 11
662 652 = 131
6662 6652 = 1331
66662 66652 = 13331
666662 666652 = 133331
62 52 = 11
562 452 = 1111
5562 4452 = 111111
55562 44452 = 11111111
555562 444452 = 1111111111
562 552 = 111
50562 50452 = 111111
5005562 5004452 = 111111111
500055562 500044452 = 111111111111
All numbers are palindromes in the next
'nec plus ultra' (one infinite and one finite) marvelous patterns!
62 52 = 11
6562 5652 = 111111
656562 565652 = 1111111111
65656562 56565652 = 11111111111111
62 52 = 11
662 552 = 1331
6662 5552 = 135531
66662 55552 = 13577531
666662 555552 = 1357997531
P.S. Note the following observations
65656 + 56565 = 122221 a palindrome
65656 56565 = 9091 = 09_09_1 = 1n1n1
1n1n1 is a pseudopalindrome ( n = 1 hence 1n = 101 = 09 )
|