World!Of
Numbers

WON plate
|

Some beautiful patterns resulting in palindromes

After an exercice on Sloane's integer sequences A048611 and A048612 [ June 27, 1999 ]
originally submitted by Felice Russo with description
[ Least solutions for 'Difference between two squares is a repunit of length n' ]
I discovered that some beautiful patterns resulting in palindromes could be constructed.

        6252 = 11
      662652 = 131
    66626652 = 1331
  6666266652 = 13331
666662666652 = 133331

        6252 = 11
      562452 = 1111
    55624452 = 111111
  5556244452 = 11111111
555562444452 = 1111111111

            562552 = 111
        5056250452 = 111111
    50055625004452 = 111111111
500055562500044452 = 111111111111
All numbers are palindromes in the next
'nec plus ultra' (one infinite and one finite) marvelous patterns!
            6252 = 11
        65625652 = 111111
    656562565652 = 1111111111
6565656256565652 = 11111111111111

        6252 = 11
      662552 = 1331
    66625552 = 135531
  6666255552 = 13577531
666662555552 = 1357997531

P.S. Note the following observations

65656 + 56565 = 122221 a palindrome
6565656565 = 9091 = 09_09_1 = 1n1n1

1n1n1 is a pseudopalindrome ( n = –1 hence 1n = 10–1 = 09 )


A000045 Prime Curios! Prime Puzzle
Wikipedia 45 Le Nombre 45 Numberland 45














[ TOP OF PAGE]


( © All rights reserved )
Patrick De Geest - Belgium - Short Bio - Some Pictures
E-mail address : pdg@worldofnumbers.com