[ January 31, 2024 ] [ Last update ]
Detecting patterns in sum of the first n palindromes.
By Tony Sand (email)
Apply the method '\(\color{blueviolet}{\text{recording the indices when the terms of a sequence increases}}\)
\(\color{blueviolet}{\text{in length (base_10) by one digit compared to its previous term}}\)' to the sequence
of the triangular numbers (A000217) with formula (k^2+k)/2.
Very quickly you'll notice that the new sequence on the right side is a twofold
alternation of the approximations to the digits of sqrt(2) and sqrt(20).
\(\sqrt{2} = 1,41421356\ldots\) and \(\sqrt{20} = 4,472135955\ldots\)
\(\bbox[8px,border:1px yellow solid]{
\begin{align}
1 &\to 1\\
10 &\to 4\\
105 &\to 14\\
1035 &\to 45\\
10011 &\to 141\\
100128 &\to 447\\
1000405 &\to 1414\\
10001628 &\to 4472\\
100005153 &\to 14142\\
1000006281 &\to 44721\\
10000020331 &\to 141421\\
100000404505 &\to 447214\to \scriptsize{\sqrt{20}}\\
1000001326005 &\to 1414214\to \scriptsize{\sqrt{2}}
\end{align}
}\)
Next I was applying this method to the sequence A046489
titled 'Sum of the first n palindromes' and surprisingly a threefold pattern emerged
as illustrated with the three colors.
\(\bbox[8px,border:1px maroon solid]{
\begin{align}
1 &\to 1\\
10 &\to 4 \\
111 &\to 12\\
\\
1004 &\to 22\\
10070 &\to 53\\
102642 &\to 132\\
\\
1009749 &\to 237\\
10033308 &\to 545\\
100154396 &\to 1330\\
\\
1001369313 &\to 2381\\
10004196212 &\to 5461\\
100024288068 &\to 13314\\
\\
1000006759460 &\to 23818\\
10000212832964 &\to 54619\\
100001115019389 &\to 133151\\
\\
1000007042189240 &\to \color{red}{238198}\\
10000034762413704 &\to \color{green}{546204}\\
100000120903813131 &\to \color{blue}{1331525}\\
\\
1000000135026527885 &\to 2381993\\
10000003532393213172 &\to 5462051\\
100000021451421850551 &\to 13315265\\
\\
1000000135057109873490 &\to 23819948\\
10000000409012039207852 &\to 54620521\\
100000001559889033349352 &\to 133152662\\
\\
1000000010677994338403061 &\to 238199489\\
10000000007427979784149364 &\to 546205219\\
100000000233783283781587628 &\to 1331526634\\
\\
1000000001004034700313682433 &\to 2381994901\\
10000000002965934808413585636 &\to 5462052207\\
100000000001714647986654094989 &\to 13315266351
\end{align}
}\)
Alas, after trying various roots and powers I didn't came accross approximations
for these three terms. I don't understand why? Can you draw on the wisdom of crowds?
I'm sure there must be an answer hidden somewhere.
|