[ October 9, 2022 ] [ Last update September 18, 2023 ]
Highlighting semiprime palindromes with record merit scores.
Patrick De Geest Merit Score 0,987654...
Let us define this merit score (approach by courtesy of Alexandru Petrescu).
Let P = p1 * p2 P = palindrome ; p1 & p2 prime factors ; p1 < p2
MS = \( {{2\ *\ p_1} \over {p_1\ +\ p_2}}\)
As I am considering only sporadic semiprimes I will leave out the
palindromic squares, or the cases whereby p1 = p2, which always
yield the top merit score of 1. So the upper bound becomes 0,999999...
To avoid the trivial cases I will consider only palindromes with lengths ⩾ 5.
Some large semiprime palindromes will never reach the top of the list with best
merit scores. Yet due to their sizes they have an impressive appearance.
In annex to the list I will show some examples without bothering with merit
and ordered by the size of the smallest primefactor p1.
Let me show you for each palindromic numberformat (SUPP, PWP & PDP)
a selection whereby the length of p1 is well over half the length of p2.
When both p1 and p2 have lengths ⩾ 100 the highlights are in yellow .
The finest semiprime SUPP's
(38*10^5-83)/99 { p3 * p3 } 131 * 293 MS = 0,617925... |
(38*10^29-83)/99 { p15 * p15 } 127342353197113 * 301422405194791 MS = 0,593996... |
(74*10^35-47)/99 { p17 * p18 } 80905830103195001 * 923882427905809747 MS = 0,161040... |
(79*10^9-97)/99 { p4 * p6 } 7187 * 111031 MS = 0,121589... |
(98*10^15-89)/99 { p7 * p9 } 5923097 * 167125237 MS = 0,068456... |
(98*10^11-89)/99 { p5 * p7 } 48821 * 2027609 MS = 0,047024... |
(19*10^25-91)/99 { p12 * p14 } 174551368897 * 10994997812503 MS = 0,031254... |
••• |
\( {{(98*10^{99}-89)} \over 99} \) | {p39} 260156792519156427914594659296032226221 {p61} 3805009203540589909709562711595275004238564354139790637203009 |
|
\( {{(98*10^{89}-89)} \over 99} \) | {p42} 559734928538684225342816557954109919167929 {p48} 176851387938813668219697246806390393621820349141 |
|
\( {{(78*10^{107}-87)} \over 99} \) | {p44} 51618316189837999713481301122463343843497743 {p64} 1526355073228630587726658399348398542297837925279399823133253709 | |
|
The finest semiprime PWP's
(10^7+36*10^3-1)/9 { p4 * p4 } 1051 * 1061 MS = 0,995265... |
10^9-5*10^4-1 { p5 * p5 } 30109 * 33211 MS = 0,951011... |
10^5-*10^2-1 { p3 * p3 } 283 * 353 MS = 0,889937... |
10^43-7*10^21-1 { p22 * p22 } 2215006022870241309047 * 4514660410287207794617 MS = 0,658281... |
10^11-7*10^5-1 { p6 * p6 } 205537 * 486527 MS = 0,593983... |
(10^11+27*10^5-1)/9 { p5 * p6 } 59957 * 185323 MS = 0,488886... |
10^5-4*10^2-1 { p3 * p3 } 137 * 727 MS = 0,317130... |
10^5-7*10^2-1 { p3 * p3 } 109 * 911 MS = 0,213725... |
(7*10^5-54*10^2-7)/9 { p2 * p4 } 71 * 1087 MS = 0,122625... |
••• |
|