| [ December 3, 2012 ]Pandigital PRP's of the form abcd! +/- efghij
 (A 4-digit factorial and a 6-digit displacement)
 The (probable) primes from the next list of pandigitals
 (split into 4-digit factorials and a displacement of the remaining 6 digits)
 must have prime displacements (both positive and negative).
 ps. the same is true for the ninedigital case (resp. 4 and 5 digits)
 (also known as 'zeroless pandigital').
 Suppose we have a composite displacement then we could split it
 into its factors. One of the factors of this 6-digit number is always smaller
 than the factorial number itself and hence we can extract a common factor:
 [ 1*2*3*4*...*(n-1)*(n) ] +/- [ f1*...*fn ]
 [ cf ] * [ [ 1*2*3*4*...*(n-1)*(n) ] +/- [ f1*...*fn ] ]
 rendering the whole shebang divisible by this common factor
 yielding no longer a (probable) prime but a composite.
 Hence the 6-digit displacement itself must be prime as well !
 A smallest composite in this (probable) prime expression must be a 7-digit displacement.
 
 
 | 1024! + 865937 1025! + 978643
 1039! + 684527
 1058! + 643927
 1064! + 295387
 1072! + 548693
 1208! + 657439
 1208! + 749653
 1237! + 468509
 1249! + 560873
 1256! + 348097
 1267! + 408953
 1268! + 903457
 1295! + 368047
 1409! + 583267
 1463! + 805297
 1468! + 205937
 1478! + 965023
 1486! + 530279
 1538! + 762049
 1538! + 942607
 1564! + 930827
 1580! + 672349
 1604! + 259837
 1609! + 825347
 1642! + 857039
 1652! + 807493
 1750! + 829463
 1768! + 205493
 1805! + 673429
 1825! + 640973
 1840! + 726953
 1894! + 326057
 2015! + 483697
 2035! + 748169
 2063! + 548719
 2086! + 547139
 2086! + 759431
 2087! + 615493
 2095! + 816743
 2165! + 340897
 2354! + 810697
 2486! + 375019
 2518! + 306479
 2546! + 983701
 2569! + 410387
 2659! + 704183
 2675! + 438091
 2678! + 103549
 2684! + 571093
 2690! + 351847
 2690! + 743851
 2710! + 568349
 2896! + 570413
 2906! + 875341
 2915! + 608347
 2945! + 837601
 2957! + 403861
 2960! + 174583
 3052! + 681497
 3526! + 907481
 3574! + 810269
 3640! + 528719
 3815! + 764209
 3865! + 970421
 3965! + 214087
 4012! + 583697
 4087! + 356129
 4093! + 257861
 4237! + 608591
 4607! + 235891
 4670! + 582391
 4682! + 701359
 4802! + 659173
 4805! + 237691
 4829! + 176503
 4895! + 271603
 4910! + 528673
 4985! + 610327
 5347! + 689201
 5380! + 241679
 5710! + 968423
 5806! + 197243
 5906! + 128347
 6014! + 253789
 6095! + 184273
 6104! + 283957
 6184! + 302759
 6271! + 450839
 6502! + 734189
 6835! + 104729
 6850! + 342791
 6985! + 270143
 7015! + 948263
 7168! + 530249
 7261! + 458309
 7268! + 903451
 7528! + 436091
 7540! + 863921
 7618! + 450239
 8206! + 159437
 8294! + 306157
 8362! + 159407
 8527! + 149603
 8734! + 596021
 8975! + 402631
 9031! + 268547
 
 | 1028! - 465739 1048! - 362759
 1048! - 659237
 1052! - 643879
 1063! - 254987
 1072! - 498653
 1096! - 523847
 1204! - 879653
 1204! - 936587
 1268! - 593407
 1270! - 584963
 1304! - 869257
 1342! - 680597
 1432! - 589607
 1459! - 678203
 1468! - 523907
 1507! - 426389
 1508! - 763429
 1582! - 490367
 1670! - 348259
 1685! - 432907
 1702! - 583469
 1832! - 640957
 1867! - 590243
 2015! - 684379
 2018! - 765439
 2056! - 871349
 2183! - 695407
 2390! - 547681
 2459! - 103867
 2485! - 106397
 2495! - 867301
 2531! - 409867
 2543! - 160879
 2564! - 138079
 2584! - 136709
 2609! - 475381
 2689! - 470531
 2701! - 985463
 2738! - 450691
 2759! - 608431
 2851! - 637409
 2930! - 586471
 2960! - 785143
 3046! - 217859
 3062! - 147859
 3098! - 642517
 3280! - 459167
 3406! - 982571
 3421! - 658079
 3460! - 192587
 3470! - 651289
 3520! - 768941
 3572! - 468109
 3586! - 192047
 3781! - 264059
 3790! - 845261
 3985! - 276041
 4057! - 398621
 4216! - 578309
 4310! - 756289
 4367! - 258019
 4603! - 297581
 4706! - 581239
 4709! - 128563
 4837! - 216509
 4856! - 709231
 5032! - 741869
 5047! - 812639
 5239! - 618407
 5290! - 861347
 5438! - 276019
 5471! - 283609
 5702! - 136849
 5728! - 903641
 5780! - 921643
 5792! - 864301
 5974! - 610823
 6028! - 734159
 6035! - 784129
 6037! - 182549
 6145! - 238709
 6190! - 875243
 6254! - 738109
 6347! - 518209
 6428! - 350971
 6458! - 213097
 6470! - 583291
 6485! - 137209
 6485! - 203971
 6491! - 782053
 6508! - 273149
 6508! - 973421
 6850! - 423179
 7298! - 643051
 7408! - 162593
 7520! - 968431
 7594! - 620813
 7942! - 305861
 7946! - 302851
 8024! - 756139
 8027! - 143569
 8062! - 473159
 8246! - 390751
 8432! - 610579
 8596! - 240173
 8635! - 217409
 8905! - 217643
 9034! - 856721
 9065! - 413827
 9461! - 520837
 9725! - 380641
 9820! - 617453
 9860! - 715423
 
 | 
 Underlined factorials! have pandigital solutionson both the positive and the negative displacement side.
 ( Ninedigital version of this topic please consult page ninedig5.htm )
 Note that 7408! - 162593 has a palindromic digitlength of 25452 ! Check it out for instance with PFGW using the following commandpfgw64 -f0 -od -q"len(7408!-162593)"
 though the last minus-part may be discarded.
 Or by using WolframAlpha.Just type in the inputbox 7408!-162593
 
 
For reference goals and easy searching all the nine- & pandigitals implicitly displayed in these topics are listed here.
 
Topic → 1024865937, 1025978643, 1039684527, 1058643927, 1064295387, 1072548693,1208657439, 1208749653, 1237468509, 1249560873, 1256348097, 1267408953, 1268903457,
 1295368047, 1409583267, 1463805297, 1468205937, 1478965023, 1486530279, 1538762049,
 1538942607, 1564930827, 1580672349, 1604259837, 1609825347, 1642857039, 1652807493,
 1750829463, 1768205493, 1805673429, 1825640973, 1840726953, 1894326057, 2015483697,
 2035748169, 2063548719, 2086547139, 2086759431, 2087615493, 2095816743, 2165340897,
 2354810697, 2486375019, 2518306479, 2546983701, 2569410387, 2659704183, 2675438091,
 2678103549, 2684571093, 2690351847, 2690743851, 2710568349, 2896570413, 2906875341,
 2915608347, 2945837601, 2957403861, 2960174583, 3052681497, 3526907481, 3574810269,
 3640528719, 3815764209, 3865970421, 3965214087, 4012583697, 4087356129, 4093257861,
 4237608591, 4607235891, 4670582391, 4682701359, 4802659173, 4805237691, 4829176503,
 4895271603, 4910528673, 4985610327, 5347689201, 5380241679, 5710968423, 5806197243,
 5906128347, 6014253789, 6095184273, 6104283957, 6184302759, 6271450839, 6502734189,
 6835104729, 6850342791, 6985270143, 7015948263, 7168530249, 7261458309, 7268903451,
 7528436091, 7540863921, 7618450239, 8206159437, 8294306157, 8362159407, 8527149603,
 8734596021, 8975402631, 9031268547.
 1028465739, 1048362759, 1048659237, 1052643879, 1063254987, 1072498653, 1096523847,
 1204879653, 1204936587, 1268593407, 1270584963, 1304869257, 1342680597, 1432589607,
 1459678203, 1468523907, 1507426389, 1508763429, 1582490367, 1670348259, 1685432907,
 1702583469, 1832640957, 1867590243, 2015684379, 2018765439, 2056871349, 2183695407,
 2390547681, 2459103867, 2485106397, 2495867301, 2531409867, 2543160879, 2564138079,
 2584136709, 2609475381, 2689470531, 2701985463, 2738450691, 2759608431, 2851637409,
 2930586471, 2960785143, 3046217859, 3062147859, 3098642517, 3280459167, 3406982571,
 3421658079, 3460192587, 3470651289, 3520768941, 3572468109, 3586192047, 3781264059,
 3790845261, 3985276041, 4057398621, 4216578309, 4310756289, 4367258019, 4603297581,
 4706581239, 4709128563, 4837216509, 4856709231, 5032741869, 5047812639, 5239618407,
 5290861347, 5438276019, 5471283609, 5702136849, 5728903641, 5780921643, 5792864301,
 5974610823, 6028734159, 6035784129, 6037182549, 6145238709, 6190875243, 6254738109,
 6347518209, 6428350971, 6458213097, 6470583291, 6485137209, 6485203971, 6491782053,
 6508273149, 6508973421, 6850423179, 7298643051, 7408162593, 7520968431, 7594620813,
 7942305861, 7946302851, 8024756139, 8027143569, 8062473159, 8246390751, 8432610579,
 8596240173, 8635217409, 8905217643, 9034856721, 9065413827, 9461520837, 9725380641,
 9820617453, 9860715423.
 |