[ May 8, 2009 ] [ Last Update March 4, 2010 ]
Searching for ever larger sporadic palindromes
of the form Ap + Bq (Sum Of Powers)
Patrick De Geest
Let us go fishing palindromes in a vast unlimited pool of numbers.
The rod we use can be for example this formula allowing a freedom
of four variables - two basenumbers A & B and two exponents p & q,
which need not to be consecutive necessarily.
Ap + Bq = palindrome
or with more terms...
Ap + Bq + Cr + ... = palindrome
[ all variables > 1 ]
So thousands or even millions palindromes could be generated.
The choice of these variables is all up to you. Define your own
strategy. Apply the most obscure number theory if you like.
Of course we are mainly interested in the sporadic record solutions
[ sporadic means exclusion of trivial solutions or infinite patterns that might arise ]
that once in a while will pop up on your screen. I am more than happy
to collect and display these record palindromes in the tables below
giving credit to the rightful claimant i.e., its discoverer.
I'll try to maintain a top 100 - or so - of these submissions.
If you spot some beautiful or interesting phenomena/curios but
are not directly record palindromes, report them anyway and I
will publish these as well in a separate section. Palindromic
primes (or palprimes) will be colormarked in their cells resp.
Here are some appetizers !
The powers expression | The record palindromes | Length | Discoverer |
3642 + 439046283 | 84631279204540297213648 | 23 | pdg |
6422 + 29550923 | 25805543988934550852 | 20 | pdg |
103 + 101014 | 10410161916101401 | 17 | pdg |
21004 + 3325 | 23481677618432 | 14 | pdg |
Here are your contributions !
[ February 28, 2010 ]
B.S.Rangaswamy encloses details of his new finding of a 63 digit
palindrome constituted out of nine different powers, which fully
meet the requirement of this WON plate. |
Palindrome (63 digits) |
343368382029251248465784908928151829809487564842152920283863343 |
The 9 powers |
1. 63 digits | 9032 + |
2. 32 digits | 22025005 + |
3. 25 digits | 729 + |
4. 23 digits | 14087 + |
5. 19 digits | 547714 + |
6. 13 digits | 1710 + |
7. 11 digits | 159 + |
8. 10 digits | 16593 + |
9. 10 digits | 590702 |
" This is definitely not sporadic, but strategically engineered to the core by an
Engineer. 'Start with palindrome ' is the slogan adopted.
I wish others to attempt and find palindromes having higher number of digits and
lesser number of constituent powers. I was thrilled and educated numerically,
while working on this most scintillating exercise and highly thankful for bestowing
me this opportunity." |
B.S.Rangaswamy submitted earlier two 63 digit
palindromes comprising of 14 & 13 different constituent powers.
I will present these (and much more material) later in a separate
page dedicated to this devoted contributor.
See the webpage Palindromic Sums of Powers
B.S.Rangaswamy's grandson [ July 29, 2009 ]
dictated this 32 digits long random palindrome
expressed as a summation of powers in two ways ! |
Palindrome | 37985621462109866890126412658973 (32 digits) |
The powers | 61632476392004452 + 906812412 + 74272 + 232 + 32
OR
336155131563 + 474963825432 + 2719342 + 7152 + 102 + 33 |
With the liberty to use squares, cubes and other powers more than once, every palindrome can be expressed as a summation of powers in several ways ! Lowest palindrome 11 is lone exception to this statement. All numbers more than 23 are either powers or sums of powers. To arrive at the least number of constituent powers is really an intellectual task. |
The powers expression | The palindromic curio | Len |
B.S.Rangaswamy [ June 15, 2009 ] curio 9 |
605 + 533 + 1702 | 777777777 | 9 |
B.S.Rangaswamy [ July 11, 2009 ] curio 10 - minimum one 3rd, 4th or higher power |
230 + 61132 + 172 + 152 + 22 | 1111111111 | 10 |
231 + 86452 + 502 + 72 | 2222222222 | 10 |
577352 + 502 + 242 + 25 | 3333333333 | 10 |
16443 + 10702 + 113 + 152 + 22 | 4444444444 | 10 |
129 + 198942 + 153 + 242 + 24 | 5555555555 | 10 |
18823 + 913 + 1102 + 33 | 6666666666 | 10 |
881912 + 503 + 142 + 102 | 7777777777 | 10 |
233 + 172902 + 104 + 142 | 8888888888 | 10 |
999992 + 4472 + 53 + 26 | 9999999999 | 10 |
B.S.Rangaswamy [ July 11, 2009 ] curio 20 |
33333333332 + 326 + 61132 + 172 + 152 + 22 | 11111111111111111111 | 20 |
47140452072 + 926422 + 203 + 54 + 222 + 102 | 22222222222222222222 | 20 |
57735026912 + 1017302 + 463 + 402 + 24 | 33333333333333333333 | 20 |
66666666662 + 942802 + 553 + 632 + 122 | 44444444444444444444 | 20 |
74535599242 + 1220512 + 4722 + 152 + 132 | 55555555555555555555 | 20 |
81649658092 + 672872 + 105 + 402 + 63 | 66666666666666666666 | 20 |
88191710362 + 1247252 + 513 + 782 + 112 | 77777777777777777777 | 20 |
94280904152 + 1243942 + 533 + 202 + 53 + 52 | 88888888888888888888 | 20 |
99999999992 + 1414212 + 105 + 262 + 34
OR
46415883 + 73402262 + 11222 + 182 + 35 | 99999999999999999999 | 20 |
The powers expression | The palindromes/palprimes | Len | Exponents |
Jeff Heleen [ June 20, 2009 ] gives a few largest solutions with four summands. He used A^p + B^q + C^r + D^s and
A,B,C and D were restricted to values from 2 to 1000. |
10005 + 9754 + 4403 + 1242 | 1000903773090001 | 16 | {5,4,3,2} |
9995 + 9664 + 4603 + 7922 | 995880868088599 | 15 | |
9986 + 8335 + 3944 + 3463 | 988460938839064889 | 18 | {6,5,4,3} |
6786 + 7475 + 9024 + 8283 | 97368799899786379 | 17 | |
9827 + 7066 + 185 + 8944 | 880727346020643727088 | 21 | {7,6,5,4} |
7537 + 5936 + 1745 + 4194 | 137310070393070013731 | 21 | |
Jeff Heleen [ June 29, 2009 ] gives a few more solutions with two summands. They don't necessarily have any limits except for the lower powers, otherwise it would take years to run the program. |
95014232 + 14506 | 9294204667664024929 | 19 | {2,6} |
99944872 + 2486 | 332543535345233 | 15 | |
18272282 + 21527 | 213744953057750359447312 | 24 | {2,7} |
34091492 + 1187 | 330169686961033 | 15 | |
47490222 + 2198 | 5291207216127021925 | 19 | {2,8} |
16432272 + 408 | 9253794973529 | 13 | |
20000012 + 1009 | 1000004000004000001 | 19 | {2,9} |
28071982 + 39 | 7880360630887 | 13 | |
6867142 + 4910 | 79792737873729797 | 17 | {2,10} |
65307652 + 2410 | 106054272450601 | 15 | |
4426143 + 945 | 86711255955211768 | 17 | {3,5} |
6613 + 585 | 945161549 | 9 | |
11684 + 25266 | 259776631131136677952 | 21 | {4,6} |
10014 + 106 | 1004007004001 | 13 | |
380484 + 1748 | 2935913281823195392 | 19 | {4,8} |
100014 + 108 | 10004000700040001 | 17 | |
The powers expression | The palindromes | Length | Discoverer |
Jean Claude Rosa [ June 20, 2009 ] searched for solutions including
the number of the beast 666. |
6662 + 13663 | 2549339452 | 10 | JCR |
6663 + 8873 | 993272399 | 9 | JCR |
6663 + 160919803342 | 258951831070138159852 | 21 | JCR |
Aficionado's of Ubasic might like to run my little program code.
[ ps. alas, Ubasic doesn't work with a 64-bit engine like Vista. ]
It is free for use. Amend or improve or optimize it as you like. If
you wrote other/faster code and/or in other languages that you like
to share with my readers please send it in and I will make it public.
10 color 15:cls
20 'file SUMPABPQ.UB by Patrick De Geest
30 Ti="Palindromes of the form A^p+B^q"
40 print Ti:print
50 open "sumpower.txt" for append as #1
60 print #1,"********** ********** ********** **********"
70 A=2:B=0:Cc=1
80 input "exponent p ";EP
90 input "exponent q ";EQ
100 input "max length palindrome ";MP
110 loop
120 X=A^EP+B^EQ
130 Q=str(X):L=len(Q)
140 for P=2 to L
150 if mid(Q,P)<>mid(Q,L+2-P) then cancel for:goto 200
160 next P
170 M=str(A)+" ^"+str(EP)+" +"+str(B)+" ^"+str(EQ)+" = "+
str(X)+" ["+str(alen(X))+" ]"
180 print #1,M
190 beep:print Cc;spc(6);A;"^";EP;" +";B;"^";EQ;" = ";:
color 10:print X;:color 15:print " [";alen(X);"]":inc Cc
200 inc B
210 if alen(X)>MP then color 11:print A;"|";B;chr(13);:
color 15:inc A:B=0
220 endloop
230 ' use close #1 after Ctrl+C or Ctrl+Break
|
---|
Contributors
B.S.Rangaswamy (email)
Jeff Heleen (email)
Jean Claude Rosa (email)
|