[ March 20, 2008 ]
Blending palindromes and nine- & pandigitals using multiplication by 9
B.S. Rangaswamy (email)
" I happened to decipher my 1997 diary, wherein some strange bond
between certain palindromic numbers and pandigitals were recorded,
which I would like to share with your readers."
❄ ❄
There exist nine thousand 8-digit palindromic numbers. Only a very
few of these, when multiplied by 9, result in ninedigitals, as in :
36022063 * 9 = 324198567
and I was able to arrive at 34 such combinations of 8-digit palindromes
and ninedigitals and the list is given in the table below (left part).
❄ ❄
There are ninety thousand 9-digit palindrome numbers. Only a few
hundreds of these, when multiplied by 9, yield pandigitals, as in :
725434527 * 9 = 6528910743
and I was able to extricate 559 such combinations of 9-digit palindromes
and pandigitals and the complete list is displayed here.
❄ ❄
An interesting phenomenon which I notice is that all the 34 equations
can be transformed into 9-digit palindromes and corresponding pandigitals
by the intervention of an appropriate numeral in the centre of the palindrome,
which automatically interposes 0 in the mid portion of the ninedigital
to transform it into a pandigital ! This is illustrated below :
42055024 * 9 = 378495216 | 420545024 * 9 = 3784905216
In the above equation, the intervention of 4 between two 5's in the palindrome
transforms the product from ninedigital into pandigital. Complete list of such
strange equations is furnished hereunder.
Palindromes to nine- & pandigitals
SI | Palindrome P8 | Ninedigital P8 * 9 | Palindrome P9 | Pandigital P9 * 9 |
1 | 24055042 | 216495378 | 2405_4_5042 | 21649_0_5378 |
2 | 24066042 | 216594378 | 2406_5_6042 | 21659_0_4378 |
3 | 31599513 | 284395617 | 3159_8_9513 | 28439_0_5617 |
4 | 36022063 | 324198567 | 3602_1_2063 | 32419_0_8567 |
5 | 36099063 | 324891567 | 3609_8_9063 | 32489_0_1567 |
6 | 36133163 | 325198467 | 3613_2_3163 | 32519_0_8467 |
7 | 36499463 | 328495167 | 3649_8_9463 | 32849_0_5167 |
8 | 42055024 | 378495216 | 4205_4_5024 | 37849_0_5216 |
9 | 42066024 | 378594216 | 4206_5_6024 | 37859_0_4216 |
10 | 48022084 | 432198756 | 4802_1_2084 | 43219_0_8756 |
11 | 48099084 | 432891756 | 4809_8_9084 | 43289_0_1756 |
12 | 48577584 | 437198256 | 4857_6_7584 | 43719_0_8256 |
13 | 48699684 | 438297156 | 4869_8_9684 | 43829_0_7156 |
14 | 51355315 | 462197835 | 5135_4_5315 | 46219_0_7835 |
15 | 53155135 | 478396215 | 5315_4_5135 | 47839_0_6215 |
16 | 53188135 | 478693215 | 5318_7_8135 | 47869_0_3215 |
17 | 53699635 | 483296715 | 5369_8_9635 | 48329_0_6715 |
18 | 62466426 | 562197834 | 6246_5_6426 | 56219_0_7834 |
19 | 63022036 | 567198324 | 6302_1_2036 | 56719_0_8324 |
20 | 63099036 | 567891324 | 6309_8_9036 | 56789_0_1324 |
21 | 64266246 | 578396214 | 6426_5_6246 | 57839_0_6214 |
22 | 64299246 | 578693214 | 6429_8_9246 | 57869_0_3214 |
23 | 71355317 | 642197853 | 7135_4_5317 | 64219_0_7853 |
24 | 72466427 | 652197843 | 7246_5_6427 | 65219_0_7843 |
25 | 75388357 | 678495213 | 7538_7_8357 | 67849_0_5213 |
26 | 75399357 | 678594213 | 7539_8_9357 | 67859_0_4213 |
27 | 84022048 | 756198432 | 8402_1_2048 | 75619_0_8432 |
28 | 84099048 | 756891432 | 8409_8_9048 | 75689_0_1432 |
29 | 91599519 | 824395671 | 9159_8_9519 | 82439_0_5671 |
30 | 93699639 | 843296751 | 9369_8_9639 | 84329_0_6751 |
31 | 95144159 | 856297431 | 9514_3_4159 | 85629_0_7431 |
32 | 95199159 | 856792431 | 9519_8_9159 | 85679_0_2431 |
33 | 96388369 | 867495321 | 9638_7_8369 | 86749_0_5321 |
34 | 96399369 | 867594321 | 9639_8_9369 | 86759_0_4321 |
With a little change in equation 20 we can produce the following
unexpected gem that will be of immense interest to 'digit' lovers !
SI | Palindrome P8 | Ninedigital P8 * 9 | Palindrome P9 | Pandigital P9 * 9 |
20 | 63099036 | 567891324 | 6309_8_9036 | 56789_0_1324 |
Now change the last but one digit in the palindromes from 3 into a 2
and observe that both equations still produce valid nine- & pandigitals
where only the digits 2 and 3 are swapped. Ain't that glittering !
SI | Palindrome P8 | Ninedigital P8 * 9 | Palindrome P9 | Pandigital P9 * 9 |
20 | 63099026 | 567891234 | 6309_8_9026 | 56789_01234 |
The digit groups from 0 (1) to 4 and from 5 to 9 are swapped
but now the digits in each group are always in ascending order !
For reference goals and easy searching all the nine- & pandigitals implicitly displayed in these topics are listed here.
Topic → 3784905216
240545042, 2164905378, 240656042, 2165904378, 315989513, 2843905617, 360212063, 3241908567,
360989063, 3248901567, 361323163, 3251908467, 364989463, 3284905167, 420545024, 3784905216,
420656024, 3785904216, 480212084, 4321908756, 480989084, 4328901756, 485767584, 4371908256,
486989684, 4382907156, 513545315, 4621907835, 531545135, 4783906215, 531878135, 4786903215,
536989635, 4832906715, 624656426, 5621907834, 630212036, 5671908324, 630989036, 5678901324,
642656246, 5783906214, 642989246, 5786903214, 713545317, 6421907853, 724656427, 6521907843,
753878357, 6784905213, 753989357, 6785904213, 840212048, 7561908432, 840989048, 7568901432,
915989519, 8243905671, 936989639, 8432906751, 951434159, 8562907431, 951989159, 8567902431,
963878369, 8674905321, 963989369, 8675904321
630989036, 5678901324, 5678901234
|