| Nr. 1 36401
 decimal digits
 | Let R(n) = (10^n1)/9 be the n-digit base-10 repunit and c = 42000040044444004000024
 Then N = 34*R(36400)  c*10^2264*R(36400)/R(4550)  1
 or N = 37777777777777777... ...77777777777777773
 The long flow of 7's in the decimal expansion is eight times
 'interrupted' with the string 35777737733333773777753.
 by David Broadhurst (email) [ December 12, 2003 ]
 
  37777...77773 (36401-digits) Its formula and proof are described in PrimeForm
 https://groups.yahoo.com/neo/groups/primeform/conversations/topics/4042
 | 
| 
 David Broadhurst informed me that in the pasthttp://groups.yahoo.com/group/primeform/files/HD/patrick.zip
 you could have found the kernels of the proofs for palprimes
 with 30913, 24421, 20911, 17941, 15601, 7201 and 4201 prime digits.
 
 | 
| Nr. 2 30913
 decimal digits
 | Let R(n) = (10^n1)/9 be the n-digit base-10 repunit and c = 400440004440040044000000000440040044400044004
 Then N = 34*R(30912)  c*10^1266*R(30912)/R(2576)  1
 or N = 37777777777777777... ...77777777777777773
 The interesting bits are inside ! To see them do
 pfgw l od q"34*R(30912)c*10^1266*R(30912)/R(2576)1"
 and look in pfgw.out
 by David Broadhurst (email) [ August 5, 2003 ]
 From the Number Theory List :
 
  30913-digit palindromic prime with prime digits 
  D. Broadhurst list of palprimes with prime digits The result of the BLS test ( hd30913.out ) using the prime factors
 in the helper file ( hd30913.fac ) could once be extracted from
 http://groups.yahoo.com/group/primeform/files/HD/patrick.zip
 including the KP calling routines as for 15601 digits, and above,
 KP proofs are needed.
 Extract complete proof for this 30913-digit record holder was from
 http://physics.open.ac.uk/~dbroadhu/cert/kp30913.zip
 | 
| Nrs. 3-4 24421
 decimal digits
 | 3373773737737333337377373773734*R(24420)/R(30)  1 3335335333333553553333335335332*R(24420)/R(30) + 1
 by David Broadhurst (email) [ 2003 ]
 
  D. Broadhurst list of palprimes with prime digits For 15601 digits, and above, KP proofs are needed.
 
 | 
| Nrs. 5-9 20911
 decimal digits
 | 3737737773337373737333777377374*R(20910)/R(30)  1 3533335335353355533535335333352*R(20910)/R(30) + 1
 3353333555353335333535553333532*R(20910)/R(30) + 1
 3335555355335535355335535555332*R(20910)/R(30) + 1
 3333777733773337333773377773334*R(20910)/R(30)  1
 by David Broadhurst (email) [ October, 2003 ]
 
  D. Broadhurst list of palprimes with prime digits For 15601 digits, and above, KP proofs are needed.
 
 | 
| Nrs. 10-18 17941
 decimal digits
 | 3737333737777737377777373337374*R(17940)/R(30)  1 3555333353535533355353533335552*R(17940)/R(30) + 1
 3355553335353335333535333555532*R(17940)/R(30) + 1
 3353553553535533355353553553532*R(17940)/R(30) + 1
 3335533355553553553555533355332*R(17940)/R(30) + 1
 3333777333333733373333337773334*R(17940)/R(30)  1
 3333733373737777777373733373334*R(17940)/R(30)  1
 3333533355335533355335533353332*R(17940)/R(30) + 1
 3333377373333733373333737733334*R(17940)/R(30)  1
 by David Broadhurst (email) [ August, 2003 ]
 
  D. Broadhurst list of palprimes with prime digits For 15601 digits, and above, KP proofs are needed.
 
 | 
| Nr. 19 15769
 decimal digits
 | 3(7)157673 = 377777... ...777773 (34*10^15768-43)/9 = 7*(10^15769-1)/9-4*(10^15768+1)
 by Greg Childers (email) [ February 28, 2006 ]
 The complete proof of (34*10^15768-43)/9 with both
 the Primo and CHG certificates was once posted at
 
  http://www.pa.uky.edu/~childers/certs/P15769.zip This is a fine proof, combining state-of-the-art factorization
 with three types of primality testing and proving
 (BLS, CHG, ECPP). David Broadhurst added this prime also in
 the "Caldwell-illegitimate" appendix once located at
 http://groups.yahoo.com/group/primeform/files/NTG/gigantic.txt
 
 Plateau and Depression Primes (PDP's)
 | 
| Nrs. 20-26 15601
 decimal digits
 | 3777733777333777773337773377774*R(15600)/R(30)  1 3773373773733373733373773733774*R(15600)/R(30)  1
 3553555553353335333533555553552*R(15600)/R(30) + 1
 3535335533353553553533355335352*R(15600)/R(30) + 1
 3333733337337373737337333373334*R(15600)/R(30)  1
 3333553333335353535333333553332*R(15600)/R(30) + 1
 3333353535553333333555353533332*R(15600)/R(30) + 1
 by David Broadhurst (email) [ July 3, 2003 ]
 http://groups.yahoo.com/group/primeform/message/3404
 Number Theory List - Message 5 aug 2003
 
  D. Broadhurst list of palprimes with prime digits For 15601 digits, and above, KP proofs are needed.
 
 | 
| Nr. 27 12271
 decimal digits
 | 3777333333777337337773333337774*R(12270)/R(30)  1 by Ralph Twain [ 2003 ]
 
  D. Broadhurst list of palprimes with prime digits | 
| Nr. 28 8205
 decimal digits
 | 37773733733337373333733737774*R(8204)/R(28)  1 by Ralph Twain [ 2003 ]
 
  D. Broadhurst list of palprimes with prime digits | 
| Nr. 28-128 7201
 decimal digits
 |  A hundred-pack !! 3777777333377737737377377733337777774 *
 R(7200)/R(36)  1
 ...
 downto
 ...
 3333333377733737773777373377733333334 *
 R(7200)/R(36)  1
 by David Broadhurst (email) [ September, 2003 ]
 Complete list
  D. Broadhurst list of palprimes with prime digits | 
| Nr. 129 7141
 decimal digits
 | (30*R(17)+2)*R(7140)/R(17) + 1 by David Broadhurst (email) [ 2003 ]
 
  D. Broadhurst list of palprimes with prime digits | 
| Nr. 130 6959
 decimal digits
 | 3(23)3479 = (32*10^6959-23)/99 by Hans Rosenthal (email) [ July 7, 2003 ]
 Primo Top-20 (gold)
 Prime Curios 32323...32323 (6959-digits)
 Smoothly Undulating Palindromic Primes (SUPP's)
 | 
| Nr. 131 6249
 decimal digits
 | 7(57)3124 = (75*10^6249-57)/99 by Hans Rosenthal (email) [ August 21, 2003 ]
 Primo Top-20 (silver)
 Smoothly Undulating Palindromic Primes (SUPP's)
 | 
| Nr. 132 4909
 decimal digits
 | Let R(n) = (10^n1)/9 be the n-digit base-10 repunit and c = 4000044040404400004
 Then N = 34*R(4908)  c*10^400*R(4908)/R(818)  1
 by Ralph Twain [ 2003 ]
 
  D. Broadhurst list of palprimes with prime digits | 
| Nr. 133 4261
 decimal digits
 | (30*R(15)+4)*R(4260)/R(15)  1 or 33333333(333333373333333)28333333333
 by Phil Carmody and David Broadhurst [ June 27, 2003 ]
 http://groups.yahoo.com/group/primeform/message/3390
 
  D. Broadhurst list of palprimes with prime digits | 
| Nr. 134-1528 4201
 decimal digits
 |  A 1395-pack !! 3777777777377733773333333773377737777777774 *
 R(4200)/R(42)  1
 ...
 downto
 ...
 3333333333333533533553553353353333333333332 *
 R(4200)/R(42) + 1
 by David Broadhurst (email) [ September, 2003 ]
 Complete list
  D. Broadhurst list of palprimes with prime digits | 
| Nr. 1529 4159
 decimal digits
 | (30*R(14)+2)*R(4158)/R(14) + 1 by David Broadhurst [ 2003 ]
 
  D. Broadhurst list of palprimes with prime digits | 
| Nr. 1530 4157
 decimal digits
 | 3(53)2078 = (35*10^4157-53)/99 by Hans Rosenthal (email) [ Feb 11, 2002 ]
 Prime Curios 35353...35353 (4157-digits)
 Smoothly Undulating Palindromic Primes (SUPP's)
 | 
| Nr. 1531 3407
 decimal digits
 | 3(23)1703 = (32*10^3407-23)/99 by Hans Rosenthal (email) [ Oct 19, 2001 ]
 Prime Curios 32323...32323 (3407-digits)
 Smoothly Undulating Palindromic Primes (SUPP's)
 | 
| Nr. 1532 3381
 decimal digits
 | 3(7)33793 = (34*10^3380-43)/9 = 7*(10^3381-1)/9-4*(10^3379+1)
 by Patrick De Geest (email) [ September 19, 2003 ]
 Plateau and Depression Primes (PDP's)
 | 
| Nr. 1533 3147
 decimal digits
 | 3(53)1573 = (35*10^3147-53)/99 by Hans Rosenthal (email) [ Oct 19, 2001 ]
 Smoothly Undulating Palindromic Primes (SUPP's)
 | 
| Nr. 1534 3037
 decimal digits
 | 3(2)30353 = (29*10^3036+7)/9 = 2*(10^3037-1)/9+(10^3036+1)
 by Patrick De Geest (email) [ August 2, 2003 ]
 Prime Curios 32222...22223 (3037-digits)
 Plateau and Depression Primes (PDP's)
 | 
| Nr. 1535 3015
 decimal digits
 | 3(23)1507 = (32*10^3015-23)/99 by Hans Rosenthal (email) [ Oct 19, 2001 ]
 Smoothly Undulating Palindromic Primes (SUPP's)
 |