| 
 [ July 16, 2001 ] 
A Pandigital Programming Challenge based on sequence A061604 
Amarnath Murthy (email) 
A pandigital number is a number containing all ten digits from 0 to 9. 
For the sake of this topic we allow  multiplicity  of the digits. 
Amarnath Murthy submitted integer sequence A061604 to Sloane's 
database in May 2001, displaying the smallest pandigital multiples of n. 
| multiplicand n | multiplier m | pandigital n*m |  
| 1 | 1023456789 | 1023456789 |  
| 2 | 511728399 | 1023456798 |  
| 3 | 341152263 | 1023456789 |  
| 4 | 255864474 | 1023457896 |  
| 5 | 204693579 | 1023467895 |  
| 6 | 170576133 | 1023456798 |  
| 7 | 146208114 | 1023456798 |  
| 8 | 127932237 | 1023457896 |  
| 9 | 113717421 | 1023456789 |  
| 10 | 123456789 | 1234567890 |  
| 11 | etc. | etc. |  
 
As you can see all the pandigitals in the right column are ten (10) digits 
long for these first few values of n. What I like to ask you now is to find 
the smallest set (n,m) so that n*m is a pandigital number of at least 
eleven (11) digits not ending in zero's. 
I hope you enjoy this programming challenge ! 
  
Nearly twenty one years later I decided to search for that smallest set 
myself and wrote thereto the following Pari/gp program 
\\ Patrick De Geest [ GP/PARI CALCULATOR Version 2.11.4 ] February 11, 2022.
{
for(n = 1, oo,
    m = 1023456789\n-1; fl=0;
    while(fl==0,
	m+=1; p=n*m;
	p = vecsort(digits(p)); fl = 1;
	for(i = 0, 9, fl *= vecsearch(p,i); );
	if(fl, print(n," ",m," ",n*m," [",length(p),"]");
	  write("c:/pari/won110.txt", n," ",m," ",n*m," [",length(p),"]"));
    );
);
}
 
It is a curious program as it starts very slow. 
As n grows the speed accelerates ! So be a little patient at start. 
Soon the program delivered our first minimal set (n=smallest , m). 
37037 * 276094 = 10225693478 with an 11-digit pandigital! 
 
100001 * 1235794 = 123580635794 with an 12-digit pandigital! 
 
1000001 * 3245698 = 3245701245698 with an 13-digit pandigital! 
 
  
Observations 
The multiplicands n for our 12-digit and 13-digit pandigitals 
are 100001 & 1000001 are palindromic ! 
  
Many of the multiplicands are multiples of 5291. 
So is our n = 37037 which is 7 * 5291. 
Inspect the entries in the OEIS sequence A178027. 
  
Patterns with 11-digit pandigitals (no multiples of 10) 
Some n's are tautonymic ! 
148148 * 69093 = 10235989764 
185185 * 55235 = 10228693475 
259259 * 39442 = 10225693478 
296296 * 34861 = 10329174856 
370370 * 33345 = 12349987650 
407407 * 25839 = 10526989473 
etc. 
Some n's are repdigital ! 
111111 * 92115 = 10234989765 
222222 * 46062 = 10235989764 
333333 * 30705 = 10234989765 
444444 * 23031 = 10235989764 
555555 * 18423 = 10234989765 
666666 * 15354 = 10235989764 
777777 * 13275 = 10324989675 
888888 * 11673 = 10375989624 
999999 * 10235 = 10234989765 
etc. 
Some n's are palindromic. Nice pattern! 
110011 * 94069 = 10348624759 
220022 * 49739 = 10943674258 
330033 * 38166 = 12596039478 
440044 * 28567 = 12570736948 
550055 * 19975 = 10987348625 
660066 * 19083 = 12596039478 
770077 * 16324 = 12570736948 
880088 * 14436 = 12704950368 
990099 * 12722 = 12596039478 
... palindromes outside the pattern 
544445 * 20663 = 11249867035 
649946 * 15931 = 10354289726 
661166 * 15554 = 10283775964 
713317 * 16927 = 12074316859 
728827 * 14059 = 10246578793 
797797 * 13257 = 10576394829 
811118 * 12788 = 10372576984 
859958 * 12487 = 10738295546 
986689 * 10638 = 10496397582 
988889 * 10469 = 10352678941 
998899 * 12163 = 12149608537 
Patterns with 12-digit pandigitals (no multiples of 10) 
Some n's are palindromic. Nice pattern! 
100001 * 1235794 = 123580635794 
200002 * 617897 = 123580635794 
300003 * 416231 = 124870548693 
400004 * 309374 = 123750837496 
500005 * 253679 = 126840768395 
600006 * 209566 = 125740857396 
700007 * 176542 = 123580635794 
800008 * 154687 = 123750837496 
900009 * 149521 = 134570245689 
Here is another pattern! 
1001001 * 122945 = 123068067945 
1010101 * 103689 = 104736362589 
1100011 * 116945 = 128640786395 
1111111 * 92115 = 102349989765 
but also 
2002002 * 63469 = 127065064938 
2020202 * 52098 = 105248483796 
2200022 * 62036 = 136480564792 
2222222 * 46062 = 102359989764 
etc. 
Some curious n's outside the pattern 
1500015 * 88313 = 132470824695 
1600016 * 89737 = 143580635792 
1700017 * 127999 = 217600475983 
1800018 * 107077 = 192740527386 
1900019 * 67705 = 128640786395 
2100021 * 59876 = 125740857396 
Patterns with 13-digit pandigitals (no multiples of 10) 
The beginning of a pattern ? 
1000001 * 3245698 = 3245701245698 
etc. 
Some curious n's outside the pattern (but with 1 zero at the end) 
1000010 * 1234685 = 1234697346850 
2000020 * 617892 = 1235796357840 
etc. 
  
This is page 91 of Emile Fourrey's book from 1899, Librairie Nony, 
“Récréations arithmétiques” 
where he expands on the numbers 5291 and 37037 
  
  
  |