*** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0 N=(98*10^9-89)/99 N=989898989 *** N is prime! Time: 0 sec
*** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0 N=(98*10^161-89)/99
|
*** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0 N=(98*10^219-89)/99
|
== ID:B268A04F8FE04 ============================================= PRIMO 1.0.0 - Primality Certificate Started 07.07.2001 at 09:04:31 PM Running time 1847h 10mn 59s Candidate certified prime ================================================================= Proved prime with 'Primo' by Hans Rosenthal. The zipped file "989_2429.zip" is 2298 KB. When unpacked the file "Primo-B268A04F8FE04-S.out" is 5197 KB and is available on demand by simple email request.
By Hans Rosenthal PFGW 1.1 test for probable primality in bases 3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67, 71,73,79,83,89,97,101,103,107,109,113,127 and 251 (98*10^21989-89)/99 is 3-PRP! (158.130000 seconds) (98*10^21989-89)/99 is 5-PRP! (161.370000 seconds) (98*10^21989-89)/99 is 7-PRP! (163.680000 seconds) (98*10^21989-89)/99 is 11-PRP! (165.210000 seconds) (98*10^21989-89)/99 is 13-PRP! (154.290000 seconds) (98*10^21989-89)/99 is 17-PRP! (153.840000 seconds) (98*10^21989-89)/99 is 19-PRP! (162.200000 seconds) (98*10^21989-89)/99 is 23-PRP! (158.520000 seconds) (98*10^21989-89)/99 is 29-PRP! (153.020000 seconds) (98*10^21989-89)/99 is 31-PRP! (166.200000 seconds) (98*10^21989-89)/99 is 37-PRP! (168.790000 seconds) (98*10^21989-89)/99 is 41-PRP! (157.910000 seconds) (98*10^21989-89)/99 is 43-PRP! (160.720000 seconds) (98*10^21989-89)/99 is 47-PRP! (166.200000 seconds) (98*10^21989-89)/99 is 53-PRP! (173.290000 seconds) (98*10^21989-89)/99 is 59-PRP! (158.950000 seconds) (98*10^21989-89)/99 is 61-PRP! (157.800000 seconds) (98*10^21989-89)/99 is 67-PRP! (150.930000 seconds) (98*10^21989-89)/99 is 71-PRP! (152.970000 seconds) (98*10^21989-89)/99 is 73-PRP! (165.600000 seconds) (98*10^21989-89)/99 is 79-PRP! (154.890000 seconds) (98*10^21989-89)/99 is 83-PRP! (155.220000 seconds) (98*10^21989-89)/99 is 89-PRP! (153.580000 seconds) (98*10^21989-89)/99 is 97-PRP! (163.730000 seconds) (98*10^21989-89)/99 is 101-PRP! (161.100000 seconds) (98*10^21989-89)/99 is 103-PRP! (163.460000 seconds) (98*10^21989-89)/99 is 107-PRP! (154.500000 seconds) (98*10^21989-89)/99 is 109-PRP! (158.790000 seconds) (98*10^21989-89)/99 is 113-PRP! (160.000000 seconds) (98*10^21989-89)/99 is 127-PRP! (151.430000 seconds) (98*10^21989-89)/99 is 251-PRP! (151.920000 seconds)
Test by Ray Chandler PFGW Version 3.4.2.64BIT.20101019.Win_Dev [GWNUM 26.4] Primality testing (98*10^52931-89)/99 [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 2 Running N-1 test using base 11 Running N+1 test using discriminant 17, base 2+sqrt(17) Calling N+1 BLS with factored part 0.02% and helper 0.02% (0.08% proof) (98*10^52931-89)/99 is Fermat and Lucas PRP! (1125.8090s+0.0014s)
Test by Ray Chandler PFGW Version 3.4.8.64BIT.20110617.Win_Dev [GWNUM 26.6] Primality testing (98*10^88595-89)/99 [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 2 Generic modular reduction using generic reduction Core2 type-1 FFT length 40K, Pass1=32, Pass2=1280 on A 294313-bit number Running N-1 test using base 13 Generic modular reduction using generic reduction Core2 type-1 FFT length 40K, Pass1=32, Pass2=1280 on A 294313-bit number Running N+1 test using discriminant 19, base 1+sqrt(19) Generic modular reduction using generic reduction Core2 type-1 FFT length 40K, Pass1=32, Pass2=1280 on A 294313-bit number Calling N+1 BLS with factored part 0.01% and helper 0.00% (0.03% proof) (98*10^88595-89)/99 is Fermat and Lucas PRP! (3373.8508s+0.0109s)
[ TOP OF PAGE]