(98*10^9-89)/99
*** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0
N=(98*10^9-89)/99
N=989898989
*** N is prime!
Time: 0 sec
(98*10^4859-89)/99
== ID:B268A04F8FE04 =============================================
PRIMO 1.0.0 - Primality Certificate
Started 07.07.2001 at 09:04:31 PM
Running time 1847h 10mn 59s
Candidate certified prime
=================================================================
Proved prime with 'Primo' by Hans Rosenthal.
The zipped file "989_2429.zip" is 2298 KB.
When unpacked the file "Primo-B268A04F8FE04-S.out" is 5197 KB
and is available on demand by simple email request.
(98*10^21989-89)/99
By Hans Rosenthal
PFGW 1.1 test for probable primality in bases
3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,
71,73,79,83,89,97,101,103,107,109,113,127 and 251
(98*10^21989-89)/99 is 3-PRP! (158.130000 seconds)
(98*10^21989-89)/99 is 5-PRP! (161.370000 seconds)
(98*10^21989-89)/99 is 7-PRP! (163.680000 seconds)
(98*10^21989-89)/99 is 11-PRP! (165.210000 seconds)
(98*10^21989-89)/99 is 13-PRP! (154.290000 seconds)
(98*10^21989-89)/99 is 17-PRP! (153.840000 seconds)
(98*10^21989-89)/99 is 19-PRP! (162.200000 seconds)
(98*10^21989-89)/99 is 23-PRP! (158.520000 seconds)
(98*10^21989-89)/99 is 29-PRP! (153.020000 seconds)
(98*10^21989-89)/99 is 31-PRP! (166.200000 seconds)
(98*10^21989-89)/99 is 37-PRP! (168.790000 seconds)
(98*10^21989-89)/99 is 41-PRP! (157.910000 seconds)
(98*10^21989-89)/99 is 43-PRP! (160.720000 seconds)
(98*10^21989-89)/99 is 47-PRP! (166.200000 seconds)
(98*10^21989-89)/99 is 53-PRP! (173.290000 seconds)
(98*10^21989-89)/99 is 59-PRP! (158.950000 seconds)
(98*10^21989-89)/99 is 61-PRP! (157.800000 seconds)
(98*10^21989-89)/99 is 67-PRP! (150.930000 seconds)
(98*10^21989-89)/99 is 71-PRP! (152.970000 seconds)
(98*10^21989-89)/99 is 73-PRP! (165.600000 seconds)
(98*10^21989-89)/99 is 79-PRP! (154.890000 seconds)
(98*10^21989-89)/99 is 83-PRP! (155.220000 seconds)
(98*10^21989-89)/99 is 89-PRP! (153.580000 seconds)
(98*10^21989-89)/99 is 97-PRP! (163.730000 seconds)
(98*10^21989-89)/99 is 101-PRP! (161.100000 seconds)
(98*10^21989-89)/99 is 103-PRP! (163.460000 seconds)
(98*10^21989-89)/99 is 107-PRP! (154.500000 seconds)
(98*10^21989-89)/99 is 109-PRP! (158.790000 seconds)
(98*10^21989-89)/99 is 113-PRP! (160.000000 seconds)
(98*10^21989-89)/99 is 127-PRP! (151.430000 seconds)
(98*10^21989-89)/99 is 251-PRP! (151.920000 seconds)
(98*10^52931-89)/99
Test by Ray Chandler
PFGW Version 3.4.2.64BIT.20101019.Win_Dev [GWNUM 26.4]
Primality testing (98*10^52931-89)/99 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 2
Running N-1 test using base 11
Running N+1 test using discriminant 17, base 2+sqrt(17)
Calling N+1 BLS with factored part 0.02% and helper 0.02% (0.08% proof)
(98*10^52931-89)/99 is Fermat and Lucas PRP! (1125.8090s+0.0014s)
(98*10^88595-89)/99
Test by Ray Chandler
PFGW Version 3.4.8.64BIT.20110617.Win_Dev [GWNUM 26.6]
Primality testing (98*10^88595-89)/99 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 2
Generic modular reduction using generic reduction Core2 type-1 FFT length 40K, Pass1=32, Pass2=1280 on A 294313-bit number
Running N-1 test using base 13
Generic modular reduction using generic reduction Core2 type-1 FFT length 40K, Pass1=32, Pass2=1280 on A 294313-bit number
Running N+1 test using discriminant 19, base 1+sqrt(19)
Generic modular reduction using generic reduction Core2 type-1 FFT length 40K, Pass1=32, Pass2=1280 on A 294313-bit number
Calling N+1 BLS with factored part 0.01% and helper 0.00% (0.03% proof)
(98*10^88595-89)/99 is Fermat and Lucas PRP! (3373.8508s+0.0109s)
[
TOP OF PAGE]
( © All rights reserved ) - Last modified : March 19, 2023.
Patrick De Geest - Belgium
- Short Bio - Some Pictures
E-mail address : pdg@worldofnumbers.com