*** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0 N=(75*10^3-57)/99 N=757 *** N is prime! Time: 0 sec
*** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0 N=(75*10^17-57)/99 N=75757575757575757 Factor: 2^2 divides N - 1 Factor: 2 divides N + 1 Factor: 3 divides N - 1 Factor: 11 divides N - 1 Factor: 53 divides N - 1 Factor: 149 divides N + 1 Factorization results: F1=0.2278 F2=0.1466 F1=6996 F2=298 Pass: gcd(5^((N-1)/2) - 1, N) = 1: R20=75757575757575755 Pass: 5^(N-1) = 1 (mod N): R20=1 Fail: gcd(U{(N+1)/2}, N) not = 1: d=5 p=1 q=-1 R20=0 Fail: gcd(U{(N+1)/2}, N) not = 1: d=5 p=3 q=1 R20=0 Pass: gcd(U{(N+1)/2}, N) = 1: d=5 p=5 q=5 R20=2 Pass: U{N+1} = 0 (mod N): d=5 p=5 q=5 R20=0 Fail: gcd(5^((N-1)/3) - 1, N) not = 1: R20=0 Fail: gcd(7^((N-1)/3) - 1, N) not = 1: R20=0 Pass: gcd(13^((N-1)/3) - 1, N) = 1: R20=63242172398142789 Pass: 13^(N-1) = 1 (mod N): R20=1 Pass: gcd(13^((N-1)/11) - 1, N) = 1: R20=43901163972662109 Pass: gcd(13^((N-1)/53) - 1, N) = 1: R20=7556654713222190 Pass: gcd(U{(N+1)/149}, N) = 1: d=5 p=5 q=5 R20=61703462868850100 BLS tests passed: F1=0.2278 F2=0.1466 Main divisor test: F1=0.2278 F2=0.1287 G=0.3565 S=0.0000 T=1 G=1042404 Main divisor test passed: 1/1 Final divisor test: F=0.2278 G=0.3565 H=0.8121 t=-1 a=743 Final divisor test passed: 1487/1487 r=1476 i=0 *** N is prime! Time: 0 sec
*** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0 N=(75*10^77-57)/99 N=75757575757575757575757575757575757575757575757575757575757575757575757575757 Factor: 2^2 divides N - 1 Factor: 2 divides N + 1 Factor: 3 divides N - 1 Factor: 17 divides N + 1 Factor: 227 divides N + 1 Factorization results: F1=0.0140 F2=0.0506 F1=12 F2=7718 Pass: gcd(5^((N-1)/2) - 1, N) = 1: R20=57575757575757575755 Pass: 5^(N-1) = 1 (mod N): R20=1 Fail: gcd(U{(N+1)/2}, N) not = 1: d=5 p=1 q=-1 R20=0 Fail: gcd(U{(N+1)/2}, N) not = 1: d=5 p=3 q=1 R20=0 Pass: gcd(U{(N+1)/2}, N) = 1: d=5 p=5 q=5 R20=2 Pass: U{N+1} = 0 (mod N): d=5 p=5 q=5 R20=0 Fail: gcd(5^((N-1)/3) - 1, N) not = 1: R20=0 Pass: gcd(7^((N-1)/3) - 1, N) = 1: R20=7576229888951997391 Pass: 7^(N-1) = 1 (mod N): R20=1 Pass: gcd(U{(N+1)/17}, N) = 1: d=5 p=5 q=5 R20=12532073251108847825 Pass: gcd(U{(N+1)/227}, N) = 1: d=5 p=5 q=5 R20=49477191566042842256 BLS tests passed: F1=0.0140 F2=0.0506 APRCL test T=2520 S=22342564747827993241663860420075425 APRCL main test (1) at level 5 for p=2 APRCL main test (1 2) done: p=2 q=3 k=1 g=2 h=0 R20=1 APRCL L_2 condition satisfied APRCL main test (1 3) done: p=2 q=5 k=2 g=2 h=3 R20=0 APRCL main test (1 4) done: p=2 q=7 k=1 g=3 h=1 R20=57575757575757575756 APRCL main test (1 5) done: p=2 q=13 k=2 g=2 h=3 R20=0 APRCL main test (1 6) done: p=2 q=11 k=1 g=2 h=1 R20=57575757575757575756 APRCL main test (1 7) done: p=2 q=31 k=1 g=3 h=0 R20=1 APRCL main test (1 8) done: p=2 q=61 k=2 g=2 h=0 R20=2 APRCL main test (1 9) done: p=2 q=19 k=1 g=2 h=0 R20=1 APRCL main test (1 10) done: p=2 q=37 k=2 g=2 h=3 R20=0 APRCL main test (1 11) done: p=2 q=181 k=2 g=2 h=1 R20=0 APRCL main test (1 12) done: p=2 q=29 k=2 g=2 h=2 R20=57575757575757575755 APRCL main test (1 13) done: p=2 q=43 k=1 g=3 h=1 R20=57575757575757575756 APRCL main test (1 14) done: p=2 q=71 k=1 g=7 h=0 R20=1 APRCL main test (1 15) done: p=2 q=127 k=1 g=3 h=0 R20=1 APRCL main test (1 16) done: p=2 q=211 k=1 g=2 h=1 R20=57575757575757575756 APRCL main test (1 17) done: p=2 q=421 k=2 g=2 h=1 R20=0 APRCL main test (1 18) done: p=2 q=631 k=1 g=3 h=1 R20=57575757575757575756 APRCL main test (1 19) done: p=2 q=41 k=3 g=6 h=0 R20=64854494063723011252 APRCL main test (1 20) done: p=2 q=73 k=3 g=5 h=5 R20=58729776234871004649 APRCL main test (1 21) done: p=2 q=281 k=3 g=3 h=1 R20=39452835127702554655 APRCL tests for p=2 completed APRCL main test (2) at level 5 for p=3 APRCL L_3 condition satisfied APRCL main test (2 4) done: p=3 q=7 k=1 g=3 h=1 R20=1 APRCL main test (2 5) done: p=3 q=13 k=1 g=2 h=2 R20=57575757575757575754 APRCL main test (2 7) done: p=3 q=31 k=1 g=3 h=0 R20=2 APRCL main test (2 8) done: p=3 q=61 k=1 g=2 h=0 R20=2 APRCL main test (2 9) done: p=3 q=19 k=2 g=2 h=5 R20=543381936610057404 APRCL main test (2 10) done: p=3 q=37 k=2 g=2 h=2 R20=2596048707919514678 APRCL main test (2 11) done: p=3 q=181 k=2 g=2 h=8 R20=90666346163645391315 APRCL main test (2 13) done: p=3 q=43 k=1 g=3 h=2 R20=57575757575757575754 APRCL main test (2 15) done: p=3 q=127 k=2 g=3 h=7 R20=93421072578603464803 APRCL main test (2 16) done: p=3 q=211 k=1 g=2 h=2 R20=57575757575757575754 APRCL main test (2 17) done: p=3 q=421 k=1 g=2 h=0 R20=2 APRCL main test (2 18) done: p=3 q=631 k=2 g=3 h=4 R20=97398169636494383561 APRCL main test (2 20) done: p=3 q=73 k=2 g=5 h=3 R20=10503354311837648382 APRCL tests for p=3 completed APRCL main test (3) at level 5 for p=5 APRCL L_5 condition satisfied APRCL main test (3 6) done: p=5 q=11 k=1 g=2 h=2 R20=94264963686451289757 APRCL main test (3 7) done: p=5 q=31 k=1 g=3 h=3 R20=46936587519313846057 APRCL main test (3 8) done: p=5 q=61 k=1 g=2 h=1 R20=54578844070916094565 APRCL main test (3 11) done: p=5 q=181 k=1 g=2 h=3 R20=10048995803398904647 APRCL main test (3 14) done: p=5 q=71 k=1 g=7 h=1 R20=66789297457815608976 APRCL main test (3 16) done: p=5 q=211 k=1 g=2 h=2 R20=20134727023610921097 APRCL main test (3 17) done: p=5 q=421 k=1 g=2 h=0 R20=28769986696764361074 APRCL main test (3 18) done: p=5 q=631 k=1 g=3 h=1 R20=7301325419373143786 APRCL main test (3 19) done: p=5 q=41 k=1 g=6 h=3 R20=77625150974347880951 APRCL main test (3 21) done: p=5 q=281 k=1 g=3 h=4 R20=56684408451736626405 APRCL tests for p=5 completed APRCL main test (4) at level 5 for p=7 APRCL L_7 condition satisfied APRCL main test (4 12) done: p=7 q=29 k=1 g=2 h=2 R20=49261901565353702530 APRCL main test (4 13) done: p=7 q=43 k=1 g=3 h=3 R20=30044274169114672323 APRCL main test (4 14) done: p=7 q=71 k=1 g=7 h=0 R20=60433497823955840066 APRCL main test (4 15) done: p=7 q=127 k=1 g=3 h=5 R20=14969950682179689765 APRCL main test (4 16) done: p=7 q=211 k=1 g=2 h=4 R20=75001858759186335952 APRCL main test (4 17) done: p=7 q=421 k=1 g=2 h=0 R20=29199640621082925488 APRCL main test (4 18) done: p=7 q=631 k=1 g=3 h=5 R20=89618120003923155097 APRCL main test (4 21) done: p=7 q=281 k=1 g=3 h=3 R20=42741541771764205659 APRCL tests for p=7 completed Main divisor test: F1=0.0140 F2=0.0467 G=0.5075 S=0.4468 T=2520 G=1034639488342418711034970048332852780900 Main divisor test passed: 2520/2520 *** N is prime! Time: 0 sec |
*** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0 N=(75*10^143-57)/99
|
*** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0 N=(75*10^149-57)/99
|
*** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0 N=(75*10^513-57)/99
|
== BPI:B2641029AD510 ============================================ TITANIX 2.1.0 - Primality Certificate Started 07.23.2001 at 12:08:21 PM Running time 2h 18mn 19s Candidate certified prime ================================================================= Proved prime with Titanix by Hans Rosenthal. The zipped file "757_539.zip" is 114 KB. When unpacked the file "Titanix-B2641029AD510-001.out" is 273 KB. The zip file is available on demand by simple email request.
== BPI:B2632003161A4 ============================================ TITANIX 2.1.0 - Primality Certificate Started 07.08.2001 at 12:53:56 AM Running time 7h 13mn 6s Candidate certified prime ================================================================= Proved prime with Titanix by Hans Rosenthal. The zipped file "757_707.zip" is 180 KB. When unpacked the file "Titanix-B2632003161A4-001.out" is 426 KB. The zip file is available on demand by simple email request.
[PRIMO - Task Report] Version=2.0.0 - beta 4 Task=Certification ID=B28B3040D6886 Created=04.10.2003 06:53:07 PM [Common] Path=C:\Programme\Primo200\Work\ Selected=1 Processed=1 Certified=1 Candidate #1=Certified, 3191h 36mn 47s [Candidate #1] Input=Primo-B283E033A703E-001.tmp BacktrackReport=Primo-B283E033A703E-001.br Output=Primo-B283E033A703E-001.out Status=Candidate certified prime ------------------------------- [PRIMO - Task Report] Version=2.0.0 - beta 4 Task=Verification ID=B293804335208 Created=08.21.2003 07:34:32 PM [Common] Path=C:\Programme\Primo200\Work\ Selected=1 Processed=1 Valid=1 Certificate #1=Valid, 35h 23mn 47s [Certificate #1] Output=Primo-B283E033A703E-001.out Status=Valid certificate Proved prime with 'Primo 2.0.0 - beta 4' by Hans Rosenthal using a 1333 MHz AMD Athlon cpu. The certificate was once available from Marcel Martin's website at http://www.ellipsa.net/. |
By Hans Rosenthal PFGW 1.1 test for probable primality in bases 3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61 and 251 (75*10^13265-57)/99 is 3-PRP! (49.480000 seconds) (75*10^13265-57)/99 is 5-PRP! (49.540000 seconds) (75*10^13265-57)/99 is 7-PRP! (49.440000 seconds) (75*10^13265-57)/99 is 11-PRP! (49.430000 seconds) (75*10^13265-57)/99 is 13-PRP! (49.490000 seconds) (75*10^13265-57)/99 is 17-PRP! (49.490000 seconds) (75*10^13265-57)/99 is 19-PRP! (49.550000 seconds) (75*10^13265-57)/99 is 23-PRP! (50.530000 seconds) (75*10^13265-57)/99 is 29-PRP! (49.540000 seconds) (75*10^13265-57)/99 is 31-PRP! (49.590000 seconds) (75*10^13265-57)/99 is 37-PRP! (49.480000 seconds) (75*10^13265-57)/99 is 41-PRP! (50.310000 seconds) (75*10^13265-57)/99 is 43-PRP! (49.480000 seconds) (75*10^13265-57)/99 is 47-PRP! (49.430000 seconds) (75*10^13265-57)/99 is 53-PRP! (49.540000 seconds) (75*10^13265-57)/99 is 59-PRP! (49.490000 seconds) (75*10^13265-57)/99 is 61-PRP! (49.490000 seconds) (75*10^13265-57)/99 is 251-PRP! (49.490000 seconds)
By Hans Rosenthal PFGW 1.1 test for probable primality in bases 3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61 and 251 (75*10^14579-57)/99 is 3-PRP! (54.380000 seconds) (75*10^14579-57)/99 is 5-PRP! (54.380000 seconds) (75*10^14579-57)/99 is 7-PRP! (54.430000 seconds) (75*10^14579-57)/99 is 11-PRP! (54.430000 seconds) (75*10^14579-57)/99 is 13-PRP! (54.380000 seconds) (75*10^14579-57)/99 is 17-PRP! (54.380000 seconds) (75*10^14579-57)/99 is 19-PRP! (54.320000 seconds) (75*10^14579-57)/99 is 23-PRP! (55.470000 seconds) (75*10^14579-57)/99 is 29-PRP! (54.600000 seconds) (75*10^14579-57)/99 is 31-PRP! (54.380000 seconds) (75*10^14579-57)/99 is 37-PRP! (54.320000 seconds) (75*10^14579-57)/99 is 41-PRP! (54.320000 seconds) (75*10^14579-57)/99 is 43-PRP! (54.380000 seconds) (75*10^14579-57)/99 is 47-PRP! (54.330000 seconds) (75*10^14579-57)/99 is 53-PRP! (54.320000 seconds) (75*10^14579-57)/99 is 59-PRP! (54.330000 seconds) (75*10^14579-57)/99 is 61-PRP! (54.370000 seconds) (75*10^14579-57)/99 is 251-PRP! (54.380000 seconds)
By Hans Rosenthal PFGW 1.1 test for probable primality in bases 3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61 and 251 (75*10^15293-57)/99 is 3-PRP! (57.070000 seconds) (75*10^15293-57)/99 is 5-PRP! (57.120000 seconds) (75*10^15293-57)/99 is 7-PRP! (57.060000 seconds) (75*10^15293-57)/99 is 11-PRP! (57.070000 seconds) (75*10^15293-57)/99 is 13-PRP! (57.230000 seconds) (75*10^15293-57)/99 is 17-PRP! (57.120000 seconds) (75*10^15293-57)/99 is 19-PRP! (57.120000 seconds) (75*10^15293-57)/99 is 23-PRP! (57.120000 seconds) (75*10^15293-57)/99 is 29-PRP! (57.180000 seconds) (75*10^15293-57)/99 is 31-PRP! (57.120000 seconds) (75*10^15293-57)/99 is 37-PRP! (57.070000 seconds) (75*10^15293-57)/99 is 41-PRP! (57.130000 seconds) (75*10^15293-57)/99 is 43-PRP! (57.070000 seconds) (75*10^15293-57)/99 is 47-PRP! (57.070000 seconds) (75*10^15293-57)/99 is 53-PRP! (57.060000 seconds) (75*10^15293-57)/99 is 59-PRP! (57.070000 seconds) (75*10^15293-57)/99 is 61-PRP! (57.060000 seconds) (75*10^15293-57)/99 is 251-PRP! (57.120000 seconds)
By Ray Chandler PFGW Version 3.3.6.20100908.Win_Stable [GWNUM 25.14] Primality testing (75*10^41657-57)/99 [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 2 Running N+1 test using discriminant 5, base 4+sqrt(5) (75*10^41657-57)/99 is Fermat and Lucas PRP! (500.2901s+0.0028s)
By Ray Chandler PFGW Version 3.4.6.64BIT.20110307.Win_Dev [GWNUM 26.5] Primality testing (75*10^72941-57)/99 [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 2 Running N-1 test using base 5 Running N+1 test using discriminant 11, base 2+sqrt(11) Calling N+1 BLS with factored part 0.02% and helper 0.01% (0.06% proof) (75*10^72941-57)/99 is Fermat and Lucas PRP! (1897.1641s+0.0259s)
[ TOP OF PAGE]