(38*10^3-83)/99
*** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0
N=(38*10^3-83)/99
N=383
*** N is prime!
Time: 0 sec
(38*10^9-83)/99
*** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0
N=(38*10^9-83)/99
N=383838383
*** N is prime!
Time: 1 sec
(38*10^15-83)/99
*** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0
N=(38*10^15-83)/99
N=383838383838383
Factor: 2 divides N - 1
Factor: 2^4 divides N + 1
Factor: 3^2 divides N + 1
Factor: 11 divides N - 1
Factor: 53 divides N + 1
Factor: 107 divides N + 1
Factorization results: F1=0.0920 F2=0.4054
F1=22
F2=816624
Pass: gcd(5^((N-1)/2) - 1, N) = 1: R20=383838383838381
Pass: 5^(N-1) = 1 (mod N): R20=1
Pass: gcd(U{(N+1)/2}, N) = 1: d=5 p=1 q=-1 R20=329119272615629
Pass: U{N+1} = 0 (mod N): d=5 p=1 q=-1 R20=0
Pass: gcd(U{(N+1)/3}, N) = 1: d=5 p=1 q=-1 R20=210023926703083
Pass: gcd(5^((N-1)/11) - 1, N) = 1: R20=270441632471066
Pass: gcd(U{(N+1)/53}, N) = 1: d=5 p=1 q=-1 R20=257734922813305
Pass: gcd(U{(N+1)/107}, N) = 1: d=5 p=1 q=-1 R20=231529459225001
BLS tests passed: F1=0.0920 F2=0.4054
Main divisor test: F1=0.0714 F2=0.4054 G=0.4768 S=0.0000 T=1
G=8982864
Main divisor test passed: 1/1
Final divisor test: F=0.4054 G=0.4768 H=1.2875 t=1 a=1
Final divisor test passed: 5/5 r=5 i=0
*** N is prime!
Time: 0 sec
(38*10^17-83)/99
*** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0
N=(38*10^17-83)/99
N=38383838383838383
Factor: 2 divides N - 1
Factor: 2^4 divides N + 1
Factor: 3^4 divides N - 1
Factor: 293 divides N + 1
Factor: 1201 divides N + 1
Factorization results: F1=0.1332 F2=0.4070
F1=162
F2=5630288
Pass: gcd(3^((N-1)/2) - 1, N) = 1: R20=38383838383838381
Pass: 3^(N-1) = 1 (mod N): R20=1
Pass: gcd(U{(N+1)/2}, N) = 1: d=5 p=1 q=-1 R20=11679695711985769
Pass: U{N+1} = 0 (mod N): d=5 p=1 q=-1 R20=0
Fail: gcd(3^((N-1)/3) - 1, N) not = 1: R20=0
Pass: gcd(5^((N-1)/3) - 1, N) = 1: R20=1025624004196152
Pass: 5^(N-1) = 1 (mod N): R20=1
Pass: gcd(U{(N+1)/293}, N) = 1: d=5 p=1 q=-1 R20=1110538465011468
Pass: gcd(U{(N+1)/1201}, N) = 1: d=5 p=1 q=-1 R20=5618342141313697
BLS tests passed: F1=0.1332 F2=0.4070
Main divisor test: F1=0.1151 F2=0.4070 G=0.5221 S=0.0000 T=1
G=456053328
Main divisor test passed: 1/1
*** N is prime!
Time: 0 sec
(38*10^13221-83)/99
By Hans Rosenthal
PFGW 1.1 test for probable primality in bases
3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61 and 251
(38*10^13221-83)/99 is 3-PRP! (49.380000 seconds)
(38*10^13221-83)/99 is 5-PRP! (49.820000 seconds)
(38*10^13221-83)/99 is 7-PRP! (49.320000 seconds)
(38*10^13221-83)/99 is 11-PRP! (49.760000 seconds)
(38*10^13221-83)/99 is 13-PRP! (49.320000 seconds)
(38*10^13221-83)/99 is 17-PRP! (49.270000 seconds)
(38*10^13221-83)/99 is 19-PRP! (49.260000 seconds)
(38*10^13221-83)/99 is 23-PRP! (49.270000 seconds)
(38*10^13221-83)/99 is 29-PRP! (49.270000 seconds)
(38*10^13221-83)/99 is 31-PRP! (49.210000 seconds)
(38*10^13221-83)/99 is 37-PRP! (49.440000 seconds)
(38*10^13221-83)/99 is 41-PRP! (49.270000 seconds)
(38*10^13221-83)/99 is 43-PRP! (49.270000 seconds)
(38*10^13221-83)/99 is 47-PRP! (49.270000 seconds)
(38*10^13221-83)/99 is 53-PRP! (49.270000 seconds)
(38*10^13221-83)/99 is 59-PRP! (49.210000 seconds)
(38*10^13221-83)/99 is 61-PRP! (49.210000 seconds)
(38*10^13221-83)/99 is 251-PRP! (49.210000 seconds)
(38*10^26447-83)/99
By Hans Rosenthal
PFGW 1.1 test for probable primality in bases
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127 and 251
(38*10^26447-83)/99 is 3-PRP! (303.130000 seconds)
(38*10^26447-83)/99 is 5-PRP! (307.630000 seconds)
(38*10^26447-83)/99 is 7-PRP! (304.340000 seconds)
(38*10^26447-83)/99 is 11-PRP! (305.660000 seconds)
(38*10^26447-83)/99 is 13-PRP! (312.080000 seconds)
(38*10^26447-83)/99 is 17-PRP! (308.080000 seconds)
(38*10^26447-83)/99 is 19-PRP! (306.930000 seconds)
(38*10^26447-83)/99 is 23-PRP! (305.000000 seconds)
(38*10^26447-83)/99 is 29-PRP! (303.360000 seconds)
(38*10^26447-83)/99 is 31-PRP! (305.330000 seconds)
(38*10^26447-83)/99 is 37-PRP! (305.330000 seconds)
(38*10^26447-83)/99 is 41-PRP! (310.990000 seconds)
(38*10^26447-83)/99 is 43-PRP! (305.550000 seconds)
(38*10^26447-83)/99 is 47-PRP! (305.660000 seconds)
(38*10^26447-83)/99 is 53-PRP! (303.800000 seconds)
(38*10^26447-83)/99 is 59-PRP! (305.280000 seconds)
(38*10^26447-83)/99 is 61-PRP! (307.200000 seconds)
(38*10^26447-83)/99 is 67-PRP! (305.820000 seconds)
(38*10^26447-83)/99 is 71-PRP! (305.720000 seconds)
(38*10^26447-83)/99 is 73-PRP! (306.160000 seconds)
(38*10^26447-83)/99 is 79-PRP! (304.940000 seconds)
(38*10^26447-83)/99 is 83-PRP! (306.540000 seconds)
(38*10^26447-83)/99 is 89-PRP! (306.370000 seconds)
(38*10^26447-83)/99 is 97-PRP! (305.170000 seconds)
(38*10^26447-83)/99 is 101-PRP! (302.750000 seconds)
(38*10^26447-83)/99 is 103-PRP! (304.670000 seconds)
(38*10^26447-83)/99 is 107-PRP! (304.340000 seconds)
(38*10^26447-83)/99 is 109-PRP! (305.170000 seconds)
(38*10^26447-83)/99 is 113-PRP! (305.490000 seconds)
(38*10^26447-83)/99 is 127-PRP! (304.890000 seconds)
(38*10^26447-83)/99 is 251-PRP! (303.630000 seconds)
(38*10^29897-83)/99
By Hans Rosenthal
PFGW 1.1 test for probable primality in bases
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127 and 251
(38*10^29897-83)/99 is 3-PRP! (345.040000 seconds)
(38*10^29897-83)/99 is 5-PRP! (341.530000 seconds)
(38*10^29897-83)/99 is 7-PRP! (341.970000 seconds)
(38*10^29897-83)/99 is 11-PRP! (346.410000 seconds)
(38*10^29897-83)/99 is 13-PRP! (347.130000 seconds)
(38*10^29897-83)/99 is 17-PRP! (342.460000 seconds)
(38*10^29897-83)/99 is 19-PRP! (344.050000 seconds)
(38*10^29897-83)/99 is 23-PRP! (342.140000 seconds)
(38*10^29897-83)/99 is 29-PRP! (342.620000 seconds)
(38*10^29897-83)/99 is 31-PRP! (343.120000 seconds)
(38*10^29897-83)/99 is 37-PRP! (342.740000 seconds)
(38*10^29897-83)/99 is 41-PRP! (345.040000 seconds)
(38*10^29897-83)/99 is 43-PRP! (344.500000 seconds)
(38*10^29897-83)/99 is 47-PRP! (345.040000 seconds)
(38*10^29897-83)/99 is 53-PRP! (343.120000 seconds)
(38*10^29897-83)/99 is 59-PRP! (345.310000 seconds)
(38*10^29897-83)/99 is 61-PRP! (351.850000 seconds)
(38*10^29897-83)/99 is 67-PRP! (343.780000 seconds)
(38*10^29897-83)/99 is 71-PRP! (343.890000 seconds)
(38*10^29897-83)/99 is 73-PRP! (343.660000 seconds)
(38*10^29897-83)/99 is 79-PRP! (344.330000 seconds)
(38*10^29897-83)/99 is 83-PRP! (343.010000 seconds)
(38*10^29897-83)/99 is 89-PRP! (343.180000 seconds)
(38*10^29897-83)/99 is 97-PRP! (344.210000 seconds)
(38*10^29897-83)/99 is 101-PRP! (341.030000 seconds)
(38*10^29897-83)/99 is 103-PRP! (343.340000 seconds)
(38*10^29897-83)/99 is 107-PRP! (342.570000 seconds)
(38*10^29897-83)/99 is 109-PRP! (342.620000 seconds)
(38*10^29897-83)/99 is 113-PRP! (345.430000 seconds)
(38*10^29897-83)/99 is 127-PRP! (343.010000 seconds)
(38*10^29897-83)/99 is 251-PRP! (346.360000 seconds)
(38*10^91997-83)/99
Test by Ray Chandler
PFGW Version 3.4.8.64BIT.20110617.Win_Dev [GWNUM 26.6]
Primality testing (38*10^91997-83)/99 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 3
Generic modular reduction using generic reduction Core2 type-1 FFT length 40K, Pass1=32, Pass2=1280 on A 305613-bit number
Running N-1 test using base 5
Generic modular reduction using generic reduction Core2 type-1 FFT length 40K, Pass1=32, Pass2=1280 on A 305613-bit number
Running N-1 test using base 7
Generic modular reduction using generic reduction Core2 type-1 FFT length 40K, Pass1=32, Pass2=1280 on A 305613-bit number
Running N+1 test using discriminant 13, base 2+sqrt(13)
Generic modular reduction using generic reduction Core2 type-1 FFT length 40K, Pass1=32, Pass2=1280 on A 305613-bit number
Calling N+1 BLS with factored part 0.01% and helper 0.01% (0.04% proof)
(38*10^91997-83)/99 is Fermat and Lucas PRP! (4293.2813s+0.0028s)
[
TOP OF PAGE]
( © All rights reserved ) - Last modified : March 18, 2023.
Patrick De Geest - Belgium
- Short Bio - Some Pictures
E-mail address : pdg@worldofnumbers.com