*** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0 N=(37*10^3-73)/99 N=373 *** N is prime! Time: 0 sec
*** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0 N=(37*10^21-73)/99 N=373737373737373737373 Factor: 2^2 divides N - 1 Factor: 2 divides N + 1 Factor: 3 divides N - 1 Factor: 2861 divides N + 1 Factor: 86077 divides N - 1 Factorization results: F1=0.2923 F2=0.1826 F1=1032924 F2=5722 Pass: gcd(5^((N-1)/2) - 1, N) = 1: R20=73737373737373737371 Pass: 5^(N-1) = 1 (mod N): R20=1 Fail: gcd(U{(N+1)/2}, N) not = 1: d=5 p=1 q=-1 R20=0 Fail: gcd(U{(N+1)/2}, N) not = 1: d=5 p=3 q=1 R20=0 Pass: gcd(U{(N+1)/2}, N) = 1: d=5 p=5 q=5 R20=73737373737373737371 Pass: U{N+1} = 0 (mod N): d=5 p=5 q=5 R20=0 Pass: gcd(5^((N-1)/3) - 1, N) = 1: R20=58452660287039995426 Pass: gcd(U{(N+1)/2861}, N) = 1: d=5 p=5 q=5 R20=3372261972743212479 Pass: gcd(5^((N-1)/86077) - 1, N) = 1: R20=98752305548821864299 BLS tests passed: F1=0.2923 F2=0.1826 Main divisor test: F1=0.2923 F2=0.1680 G=0.4604 S=0.0000 T=1 G=2955195564 Main divisor test passed: 1/1 Final divisor test: F=0.2923 G=0.4604 H=1.0450 t=-1 a=1 Final divisor test passed: 3/3 r=3 i=0 *** N is prime! Time: 0 sec
*** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0 N=(37*10^27-73)/99 N=373737373737373737373737373 Factor: 2^2 divides N - 1 Factor: 2 divides N + 1 Factor: 3 divides N - 1 Factor: 19 divides N - 1 Factor: 47 divides N - 1 Factor: 149 divides N - 1 Factor: 227 divides N + 1 Factorization results: F1=0.2334 F2=0.1000 F1=1596684 F2=454 Pass: gcd(5^((N-1)/2) - 1, N) = 1: R20=73737373737373737371 Pass: 5^(N-1) = 1 (mod N): R20=1 Fail: gcd(U{(N+1)/2}, N) not = 1: d=5 p=1 q=-1 R20=0 Fail: gcd(U{(N+1)/2}, N) not = 1: d=5 p=3 q=1 R20=0 Pass: gcd(U{(N+1)/2}, N) = 1: d=5 p=5 q=5 R20=73737373737373737371 Pass: U{N+1} = 0 (mod N): d=5 p=5 q=5 R20=0 Fail: gcd(5^((N-1)/3) - 1, N) not = 1: R20=0 Pass: gcd(11^((N-1)/3) - 1, N) = 1: R20=83632346710714561741 Pass: 11^(N-1) = 1 (mod N): R20=1 Pass: gcd(11^((N-1)/19) - 1, N) = 1: R20=29550811822961156404 Pass: gcd(11^((N-1)/47) - 1, N) = 1: R20=56419199612981182429 Pass: gcd(11^((N-1)/149) - 1, N) = 1: R20=51628455157741043458 Pass: gcd(U{(N+1)/227}, N) = 1: d=5 p=5 q=5 R20=34743452828901012925 BLS tests passed: F1=0.2334 F2=0.1000 APRCL test T=60 S=775775 APRCL main test (1) at level 2 for p=2 APRCL main test (1 2) done: p=2 q=3 k=1 g=2 h=0 R20=1 APRCL L_2 condition satisfied APRCL main test (1 3) done: p=2 q=5 k=2 g=2 h=1 R20=0 APRCL main test (1 4) done: p=2 q=7 k=1 g=3 h=0 R20=1 APRCL main test (1 5) done: p=2 q=13 k=2 g=2 h=0 R20=2 APRCL main test (1 6) done: p=2 q=11 k=1 g=2 h=1 R20=73737373737373737372 APRCL main test (1 7) done: p=2 q=31 k=1 g=3 h=0 R20=1 APRCL tests for p=2 completed APRCL main test (2) at level 2 for p=3 APRCL L_3 condition satisfied APRCL main test (2 4) done: p=3 q=7 k=1 g=3 h=2 R20=73737373737373737370 APRCL main test (2 5) done: p=3 q=13 k=1 g=2 h=2 R20=73737373737373737370 APRCL main test (2 7) done: p=3 q=31 k=1 g=3 h=1 R20=1 APRCL tests for p=3 completed APRCL main test (3) at level 2 for p=5 APRCL L_5 condition satisfied APRCL main test (3 6) done: p=5 q=11 k=1 g=2 h=3 R20=5105905030773550683 APRCL main test (3 7) done: p=5 q=31 k=1 g=3 h=2 R20=32988947580602778481 APRCL tests for p=5 completed Main divisor test: F1=0.2334 F2=0.0887 G=0.5438 S=0.2216 T=60 G=281177529332700 Main divisor test passed: 60/60 *** N is prime! Time: 1 sec |
*** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0 N=(37*10^81-73)/99 N=373737373737373737373737373737373737373737373737373737373737373737373737373737373 Factor: 2^2 divides N - 1 Factor: 2 divides N + 1 Factor: 3 divides N - 1 Factor: 19 divides N - 1 Factor: 2957 divides N + 1 Factor: 4673 divides N - 1 Factor: 9103 divides N + 1 Factor: 38677 divides N + 1 Factorization results: F1=0.0748 F2=0.1529 F1=1065444 F2=2082181787134 Pass: gcd(5^((N-1)/2) - 1, N) = 1: R20=73737373737373737371 Pass: 5^(N-1) = 1 (mod N): R20=1 Fail: gcd(U{(N+1)/2}, N) not = 1: d=5 p=1 q=-1 R20=0 Fail: gcd(U{(N+1)/2}, N) not = 1: d=5 p=3 q=1 R20=0 Pass: gcd(U{(N+1)/2}, N) = 1: d=5 p=5 q=5 R20=73737373737373737371 Pass: U{N+1} = 0 (mod N): d=5 p=5 q=5 R20=0 Pass: gcd(5^((N-1)/3) - 1, N) = 1: R20=84845356505395525970 Pass: gcd(5^((N-1)/19) - 1, N) = 1: R20=53920189909527480823 Pass: gcd(U{(N+1)/2957}, N) = 1: d=5 p=5 q=5 R20=77576136126780337927 Pass: gcd(5^((N-1)/4673) - 1, N) = 1: R20=62112748349734109811 Pass: gcd(U{(N+1)/9103}, N) = 1: d=5 p=5 q=5 R20=54850068881978200075 Pass: gcd(U{(N+1)/38677}, N) = 1: d=5 p=5 q=5 R20=98120338642206330541 BLS tests passed: F1=0.0748 F2=0.1529 APRCL test T=1260 S=2215833011642238256793525 APRCL main test (1) at level 4 for p=2 APRCL main test (1 2) done: p=2 q=3 k=1 g=2 h=0 R20=1 APRCL L_2 condition satisfied APRCL main test (1 3) done: p=2 q=5 k=2 g=2 h=1 R20=0 APRCL main test (1 4) done: p=2 q=7 k=1 g=3 h=0 R20=1 APRCL main test (1 5) done: p=2 q=13 k=2 g=2 h=0 R20=2 APRCL main test (1 6) done: p=2 q=11 k=1 g=2 h=1 R20=73737373737373737372 APRCL main test (1 7) done: p=2 q=31 k=1 g=3 h=1 R20=73737373737373737372 APRCL main test (1 8) done: p=2 q=61 k=2 g=2 h=2 R20=73737373737373737371 APRCL main test (1 9) for p=2 q=19 not needed APRCL main test (1 10) done: p=2 q=37 k=2 g=2 h=2 R20=73737373737373737371 APRCL main test (1 11) done: p=2 q=181 k=2 g=2 h=3 R20=0 APRCL main test (1 12) done: p=2 q=29 k=2 g=2 h=0 R20=2 APRCL main test (1 13) done: p=2 q=43 k=1 g=3 h=1 R20=73737373737373737372 APRCL main test (1 14) done: p=2 q=71 k=1 g=7 h=0 R20=1 APRCL main test (1 15) done: p=2 q=127 k=1 g=3 h=1 R20=73737373737373737372 APRCL main test (1 16) done: p=2 q=211 k=1 g=2 h=0 R20=1 APRCL main test (1 17) done: p=2 q=421 k=2 g=2 h=3 R20=0 APRCL tests for p=2 completed APRCL main test (2) at level 4 for p=3 APRCL L_3 condition satisfied APRCL main test (2 4) done: p=3 q=7 k=1 g=3 h=2 R20=73737373737373737370 APRCL main test (2 5) done: p=3 q=13 k=1 g=2 h=2 R20=73737373737373737370 APRCL main test (2 7) done: p=3 q=31 k=1 g=3 h=2 R20=73737373737373737370 APRCL main test (2 8) done: p=3 q=61 k=1 g=2 h=1 R20=1 APRCL main test (2 9) for p=3 q=19 not needed APRCL main test (2 10) done: p=3 q=37 k=2 g=2 h=8 R20=86237182384364168630 APRCL main test (2 11) done: p=3 q=181 k=2 g=2 h=4 R20=23784383288915837631 APRCL main test (2 13) done: p=3 q=43 k=1 g=3 h=1 R20=1 APRCL main test (2 15) done: p=3 q=127 k=2 g=3 h=3 R20=4763240757170894998 APRCL main test (2 16) done: p=3 q=211 k=1 g=2 h=0 R20=2 APRCL main test (2 17) done: p=3 q=421 k=1 g=2 h=2 R20=73737373737373737370 APRCL tests for p=3 completed APRCL main test (3) at level 4 for p=5 APRCL L_5 condition satisfied APRCL main test (3 6) done: p=5 q=11 k=1 g=2 h=1 R20=46376613619288299979 APRCL main test (3 7) done: p=5 q=31 k=1 g=3 h=0 R20=91139110890042379418 APRCL main test (3 8) done: p=5 q=61 k=1 g=2 h=1 R20=38577335645812743014 APRCL main test (3 11) done: p=5 q=181 k=1 g=2 h=4 R20=48294737808731758889 APRCL main test (3 14) done: p=5 q=71 k=1 g=7 h=3 R20=66012635780538974349 APRCL main test (3 16) done: p=5 q=211 k=1 g=2 h=4 R20=66801014636175443722 APRCL main test (3 17) done: p=5 q=421 k=1 g=2 h=4 R20=72546218092792686444 APRCL tests for p=5 completed APRCL main test (4) at level 4 for p=7 APRCL L_7 condition satisfied APRCL main test (4 12) done: p=7 q=29 k=1 g=2 h=6 R20=6583113516567122701 APRCL main test (4 13) done: p=7 q=43 k=1 g=3 h=2 R20=72466880179408636022 APRCL main test (4 14) done: p=7 q=71 k=1 g=7 h=4 R20=77499818037828884100 APRCL main test (4 15) done: p=7 q=127 k=1 g=3 h=2 R20=66842571369068611039 APRCL main test (4 16) done: p=7 q=211 k=1 g=2 h=0 R20=14845405093044765935 APRCL main test (4 17) done: p=7 q=421 k=1 g=2 h=0 R20=26671271325093654664 APRCL tests for p=7 completed Main divisor test: F1=0.0748 F2=0.1492 G=0.5261 S=0.3022 T=1260 G=2457855258446574514338766745257896234506700 Main divisor test passed: 1260/1260 *** N is prime! Time: 1 sec |
*** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0 N=(37*10^315-73)/99
|
*** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0 N=(37*10^849-73)/99
|
== BPI:B262E0220D31E ============================================ TITANIX 2.1.0 - Primality Certificate Started 07.06.2001 at 06:58:05 PM Running time 63h 54mn 58s Candidate certified prime ================================================================= Proved prime with Titanix by Hans Rosenthal. The zipped file "373_946.zip" is 352 KB. When unpacked the file "Titanix-B262E0220D31E-001.out" is 823 KB and is available on demand by simple email request.
== BPI:B261C02D0493E ============================================ TITANIX 2.1.0 - Primality Certificate Started 06.16.2001 at 01:06:44 PM Running time 362h 26mn 1s Candidate certified prime ================================================================= This SUPP was first proved prime by Landon Curt Noll in 1997 and the proof was verified with Titanix by Hans Rosenthal. The zipped file "373_1441.zip" is 754 KB. When unpacked the file "Titanix-B261C02D0493E-001.out" is 1742 KB and is available on demand by simple email request.
By Hans Rosenthal PFGW 1.1 test for probable primality in bases 3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61 and 251 (37*10^9591-73)/99 is 3-PRP! (19.120000 seconds) (37*10^9591-73)/99 is 5-PRP! (19.120000 seconds) (37*10^9591-73)/99 is 7-PRP! (19.110000 seconds) (37*10^9591-73)/99 is 11-PRP! (19.170000 seconds) (37*10^9591-73)/99 is 13-PRP! (19.110000 seconds) (37*10^9591-73)/99 is 17-PRP! (19.160000 seconds) (37*10^9591-73)/99 is 19-PRP! (19.110000 seconds) (37*10^9591-73)/99 is 23-PRP! (19.170000 seconds) (37*10^9591-73)/99 is 29-PRP! (19.170000 seconds) (37*10^9591-73)/99 is 31-PRP! (19.120000 seconds) (37*10^9591-73)/99 is 37-PRP! (19.120000 seconds) (37*10^9591-73)/99 is 41-PRP! (19.110000 seconds) (37*10^9591-73)/99 is 43-PRP! (19.110000 seconds) (37*10^9591-73)/99 is 47-PRP! (19.170000 seconds) (37*10^9591-73)/99 is 53-PRP! (19.110000 seconds) (37*10^9591-73)/99 is 59-PRP! (19.110000 seconds) (37*10^9591-73)/99 is 61-PRP! (19.110000 seconds) (37*10^9591-73)/99 is 251-PRP! (19.120000 seconds)
By Hans Rosenthal PFGW 1.1 test for probable primality in bases 3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61 and 251 (37*10^14691-73)/99 is 3-PRP! (54.760000 seconds) (37*10^14691-73)/99 is 5-PRP! (54.810000 seconds) (37*10^14691-73)/99 is 7-PRP! (54.820000 seconds) (37*10^14691-73)/99 is 11-PRP! (54.710000 seconds) (37*10^14691-73)/99 is 13-PRP! (54.760000 seconds) (37*10^14691-73)/99 is 17-PRP! (54.710000 seconds) (37*10^14691-73)/99 is 19-PRP! (54.760000 seconds) (37*10^14691-73)/99 is 23-PRP! (54.820000 seconds) (37*10^14691-73)/99 is 29-PRP! (54.980000 seconds) (37*10^14691-73)/99 is 31-PRP! (54.710000 seconds) (37*10^14691-73)/99 is 37-PRP! (54.760000 seconds) (37*10^14691-73)/99 is 41-PRP! (55.090000 seconds) (37*10^14691-73)/99 is 43-PRP! (54.710000 seconds) (37*10^14691-73)/99 is 47-PRP! (54.820000 seconds) (37*10^14691-73)/99 is 53-PRP! (54.710000 seconds) (37*10^14691-73)/99 is 59-PRP! (54.760000 seconds) (37*10^14691-73)/99 is 61-PRP! (54.710000 seconds) (37*10^14691-73)/99 is 251-PRP! (54.710000 seconds)
[ TOP OF PAGE]