(18*10^3-81)/99
*** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0
N=(18*10^3-81)/99
N=181
*** N is prime!
Time: 0 sec
(18*10^5-81)/99
*** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0
N=(18*10^5-81)/99
N=18181
*** N is prime!
Time: 0 sec
(18*10^1479-81)/99
== BPI:B263B01E8BA06 ============================================
TITANIX 2.1.0 - Primality Certificate
Started 07.17.2001 at 08:53:49 AM
Running time 15h 20mn 20s
Candidate certified prime
=================================================================
Proved prime with Titanix by Hans Rosenthal.
The zipped file "181_739.zip" is 219 KB.
When unpacked the file "Titanix-B263B01E8BA06-001.out" is 516 KB
and is available on demand by simple email request.
(18*10^3657-81)/99
== ID:B26D304492538 =============================================
PRIMO 1.1.0 - Primality Certificate
Started 12.16.2001 07:58:36 PM
Running time 452h 1mn 15s
Started 01.04.2002 05:33:41 PM
Running time 63h 46mn 20s
Candidate certified prime
=================================================================
Proved prime with 'Primo' by Hans Rosenthal.
The zipped file "181_1828.zip" is 1268 KB.
When unpacked the file "Primo-B26D304492538.out" is 2908 KB
and is available on demand by simple email request.
(18*10^4573-81)/99
== ID:B2772039178E8 =============================================
PRIMO 1.2.2 - Primality Certificate
Started 05.24.2002 04:37:45 PM
Running time 1576h 30mn 35s
Candidate certified prime
=================================================================
+------------------------------------------------------------------------+
| Cert_Val a "PRIMO/Titanix" certificate (.out file) validation program |
| Version 1.95 Jim Fougeron, Using the Miracl big integer library |
| Copyright, 2001-2002 Jim Fougeron, Free usage rights granted to all |
+------------------------------------------------------------------------+
Processing file primo-b2772039178e8.out
This Certificate is a PRIMO compatible certificate
1) EC Test ECtest1 != Ident, ECtest2= Ident Validated 6mn 34.820s
2) EC Test ECtest1 != Ident, ECtest2= Ident Validated 6mn 34.481s
...
677) EC Test ECtest1 != Ident, ECtest2= Ident Validated 0.003s
678) SPP Test Trial-div to 518403 !Success!!! Validated 0.003s
Prime number being certified was:
N=(18*10^4573-81)/99
Certificate for this number was FULLY validated!
Total time used to validate certificate: 18h 38mn 7.905s
There were 678 steps in the primality proof
=================================================================
Proved prime with 'Primo 1.2.2' by Hans Rosenthal.
The zipped file "181_2286.zip" is 2186 KB.
When unpacked the file "Primo-B2772039178E8.out" is 4987 KB
and is available on demand by simple email request.
(18*10^8315-81)/99
By Hans Rosenthal
PFGW 1.1 test for probable primality in bases
3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61 and 251
(18*10^8315-81)/99 is 3-PRP! (16.590000 seconds)
(18*10^8315-81)/99 is 5-PRP! (16.590000 seconds)
(18*10^8315-81)/99 is 7-PRP! (16.590000 seconds)
(18*10^8315-81)/99 is 11-PRP! (16.530000 seconds)
(18*10^8315-81)/99 is 13-PRP! (16.590000 seconds)
(18*10^8315-81)/99 is 17-PRP! (16.590000 seconds)
(18*10^8315-81)/99 is 19-PRP! (16.590000 seconds)
(18*10^8315-81)/99 is 23-PRP! (16.580000 seconds)
(18*10^8315-81)/99 is 29-PRP! (16.530000 seconds)
(18*10^8315-81)/99 is 31-PRP! (16.590000 seconds)
(18*10^8315-81)/99 is 37-PRP! (16.530000 seconds)
(18*10^8315-81)/99 is 41-PRP! (16.590000 seconds)
(18*10^8315-81)/99 is 43-PRP! (16.580000 seconds)
(18*10^8315-81)/99 is 47-PRP! (16.530000 seconds)
(18*10^8315-81)/99 is 53-PRP! (16.530000 seconds)
(18*10^8315-81)/99 is 59-PRP! (16.590000 seconds)
(18*10^8315-81)/99 is 61-PRP! (16.590000 seconds)
(18*10^8315-81)/99 is 251-PRP! (16.590000 seconds)
(18*10^30259-81)/99
By Hans Rosenthal
PFGW 1.1 test for probable primality in bases
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, and 251
(18*10^30259-81)/99 is 3-PRP! (347.240000 seconds)
(18*10^30259-81)/99 is 5-PRP! (349.880000 seconds)
(18*10^30259-81)/99 is 7-PRP! (351.800000 seconds)
(18*10^30259-81)/99 is 11-PRP! (349.760000 seconds)
(18*10^30259-81)/99 is 13-PRP! (349.050000 seconds)
(18*10^30259-81)/99 is 17-PRP! (349.490000 seconds)
(18*10^30259-81)/99 is 19-PRP! (348.720000 seconds)
(18*10^30259-81)/99 is 23-PRP! (348.890000 seconds)
(18*10^30259-81)/99 is 29-PRP! (349.380000 seconds)
(18*10^30259-81)/99 is 31-PRP! (350.970000 seconds)
(18*10^30259-81)/99 is 37-PRP! (348.340000 seconds)
(18*10^30259-81)/99 is 41-PRP! (350.370000 seconds)
(18*10^30259-81)/99 is 43-PRP! (353.830000 seconds)
(18*10^30259-81)/99 is 47-PRP! (349.710000 seconds)
(18*10^30259-81)/99 is 53-PRP! (347.510000 seconds)
(18*10^30259-81)/99 is 59-PRP! (348.340000 seconds)
(18*10^30259-81)/99 is 61-PRP! (350.150000 seconds)
(18*10^30259-81)/99 is 67-PRP! (349.060000 seconds)
(18*10^30259-81)/99 is 71-PRP! (349.440000 seconds)
(18*10^30259-81)/99 is 73-PRP! (349.110000 seconds)
(18*10^30259-81)/99 is 79-PRP! (352.620000 seconds)
(18*10^30259-81)/99 is 83-PRP! (352.570000 seconds)
(18*10^30259-81)/99 is 89-PRP! (348.770000 seconds)
(18*10^30259-81)/99 is 97-PRP! (348.010000 seconds)
(18*10^30259-81)/99 is 101-PRP! (347.130000 seconds)
(18*10^30259-81)/99 is 103-PRP! (348.780000 seconds)
(18*10^30259-81)/99 is 107-PRP! (349.390000 seconds)
(18*10^30259-81)/99 is 109-PRP! (348.830000 seconds)
(18*10^30259-81)/99 is 113-PRP! (350.150000 seconds)
(18*10^30259-81)/99 is 127-PRP! (349.110000 seconds)
(18*10^30259-81)/99 is 251-PRP! (350.480000 seconds)
(18*10^31063-81)/99
By Hans Rosenthal
PFGW 1.1 test for probable primality in bases
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, and 251
(18*10^31063-81)/99 is 3-PRP! (358.500000 seconds)
(18*10^31063-81)/99 is 5-PRP! (357.120000 seconds)
(18*10^31063-81)/99 is 7-PRP! (357.620000 seconds)
(18*10^31063-81)/99 is 11-PRP! (357.900000 seconds)
(18*10^31063-81)/99 is 13-PRP! (363.330000 seconds)
(18*10^31063-81)/99 is 17-PRP! (358.610000 seconds)
(18*10^31063-81)/99 is 19-PRP! (356.910000 seconds)
(18*10^31063-81)/99 is 23-PRP! (360.370000 seconds)
(18*10^31063-81)/99 is 29-PRP! (357.230000 seconds)
(18*10^31063-81)/99 is 31-PRP! (358.670000 seconds)
(18*10^31063-81)/99 is 37-PRP! (359.100000 seconds)
(18*10^31063-81)/99 is 41-PRP! (359.540000 seconds)
(18*10^31063-81)/99 is 43-PRP! (358.610000 seconds)
(18*10^31063-81)/99 is 47-PRP! (360.470000 seconds)
(18*10^31063-81)/99 is 53-PRP! (355.260000 seconds)
(18*10^31063-81)/99 is 59-PRP! (356.850000 seconds)
(18*10^31063-81)/99 is 61-PRP! (358.170000 seconds)
(18*10^31063-81)/99 is 67-PRP! (358.880000 seconds)
(18*10^31063-81)/99 is 71-PRP! (355.810000 seconds)
(18*10^31063-81)/99 is 73-PRP! (359.480000 seconds)
(18*10^31063-81)/99 is 79-PRP! (359.430000 seconds)
(18*10^31063-81)/99 is 83-PRP! (359.590000 seconds)
(18*10^31063-81)/99 is 89-PRP! (359.820000 seconds)
(18*10^31063-81)/99 is 97-PRP! (358.000000 seconds)
(18*10^31063-81)/99 is 101-PRP! (356.080000 seconds)
(18*10^31063-81)/99 is 103-PRP! (357.790000 seconds)
(18*10^31063-81)/99 is 107-PRP! (359.870000 seconds)
(18*10^31063-81)/99 is 109-PRP! (357.620000 seconds)
(18*10^31063-81)/99 is 113-PRP! (357.620000 seconds)
(18*10^31063-81)/99 is 127-PRP! (358.330000 seconds)
(18*10^31063-81)/99 is 251-PRP! (356.190000 seconds)
(18*10^31855-81)/99
By Hans Rosenthal
PFGW 1.1 test for probable primality in bases
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, and 251
(18*10^31855-81)/99 is 3-PRP! (367.950000 seconds)
(18*10^31855-81)/99 is 5-PRP! (366.350000 seconds)
(18*10^31855-81)/99 is 7-PRP! (363.990000 seconds)
(18*10^31855-81)/99 is 11-PRP! (364.710000 seconds)
(18*10^31855-81)/99 is 13-PRP! (366.130000 seconds)
(18*10^31855-81)/99 is 17-PRP! (365.480000 seconds)
(18*10^31855-81)/99 is 19-PRP! (368.550000 seconds)
(18*10^31855-81)/99 is 23-PRP! (365.310000 seconds)
(18*10^31855-81)/99 is 29-PRP! (365.310000 seconds)
(18*10^31855-81)/99 is 31-PRP! (366.900000 seconds)
(18*10^31855-81)/99 is 37-PRP! (362.510000 seconds)
(18*10^31855-81)/99 is 41-PRP! (368.440000 seconds)
(18*10^31855-81)/99 is 43-PRP! (363.720000 seconds)
(18*10^31855-81)/99 is 47-PRP! (366.360000 seconds)
(18*10^31855-81)/99 is 53-PRP! (365.420000 seconds)
(18*10^31855-81)/99 is 59-PRP! (364.870000 seconds)
(18*10^31855-81)/99 is 61-PRP! (363.780000 seconds)
(18*10^31855-81)/99 is 67-PRP! (363.990000 seconds)
(18*10^31855-81)/99 is 71-PRP! (364.920000 seconds)
(18*10^31855-81)/99 is 73-PRP! (364.270000 seconds)
(18*10^31855-81)/99 is 79-PRP! (363.830000 seconds)
(18*10^31855-81)/99 is 83-PRP! (365.530000 seconds)
(18*10^31855-81)/99 is 89-PRP! (366.850000 seconds)
(18*10^31855-81)/99 is 97-PRP! (365.690000 seconds)
(18*10^31855-81)/99 is 101-PRP! (362.950000 seconds)
(18*10^31855-81)/99 is 103-PRP! (364.760000 seconds)
(18*10^31855-81)/99 is 107-PRP! (366.190000 seconds)
(18*10^31855-81)/99 is 109-PRP! (362.890000 seconds)
(18*10^31855-81)/99 is 113-PRP! (364.100000 seconds)
(18*10^31855-81)/99 is 127-PRP! (365.030000 seconds)
(18*10^31855-81)/99 is 251-PRP! (365.690000 seconds)
(18*10^36915-81)/99
By Hans Rosenthal
PFGW 1.1 test for probable primality in bases
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, and 251
(18*10^36915-81)/99 is 3-PRP! (519.920000 seconds)
(18*10^36915-81)/99 is 5-PRP! (527.400000 seconds)
(18*10^36915-81)/99 is 7-PRP! (518.280000 seconds)
(18*10^36915-81)/99 is 11-PRP! (520.200000 seconds)
(18*10^36915-81)/99 is 13-PRP! (515.140000 seconds)
(18*10^36915-81)/99 is 17-PRP! (522.450000 seconds)
(18*10^36915-81)/99 is 19-PRP! (517.230000 seconds)
(18*10^36915-81)/99 is 23-PRP! (518.770000 seconds)
(18*10^36915-81)/99 is 29-PRP! (522.460000 seconds)
(18*10^36915-81)/99 is 31-PRP! (526.350000 seconds)
(18*10^36915-81)/99 is 37-PRP! (523.720000 seconds)
(18*10^36915-81)/99 is 41-PRP! (519.050000 seconds)
(18*10^36915-81)/99 is 43-PRP! (523.600000 seconds)
(18*10^36915-81)/99 is 47-PRP! (528.380000 seconds)
(18*10^36915-81)/99 is 53-PRP! (525.360000 seconds)
(18*10^36915-81)/99 is 59-PRP! (524.860000 seconds)
(18*10^36915-81)/99 is 61-PRP! (525.470000 seconds)
(18*10^36915-81)/99 is 67-PRP! (520.310000 seconds)
(18*10^36915-81)/99 is 71-PRP! (521.190000 seconds)
(18*10^36915-81)/99 is 73-PRP! (522.730000 seconds)
(18*10^36915-81)/99 is 79-PRP! (517.180000 seconds)
(18*10^36915-81)/99 is 83-PRP! (521.190000 seconds)
(18*10^36915-81)/99 is 89-PRP! (535.140000 seconds)
(18*10^36915-81)/99 is 97-PRP! (518.500000 seconds)
(18*10^36915-81)/99 is 101-PRP! (514.270000 seconds)
(18*10^36915-81)/99 is 103-PRP! (516.400000 seconds)
(18*10^36915-81)/99 is 107-PRP! (520.750000 seconds)
(18*10^36915-81)/99 is 109-PRP! (522.390000 seconds)
(18*10^36915-81)/99 is 113-PRP! (516.960000 seconds)
(18*10^36915-81)/99 is 127-PRP! (520.590000 seconds)
(18*10^36915-81)/99 is 251-PRP! (515.370000 seconds)
(18*10^66657-81)/99
By Ray Chandler
PFGW Version 3.4.4.64BIT.20101104.Win_Dev [GWNUM 26.4]
Primality testing (18*10^66657-81)/99 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 2
Running N+1 test using discriminant 7, base 1+sqrt(7)
Calling N-1 BLS with factored part 0.10% and helper 0.03% (0.34% proof)
(18*10^66657-81)/99 is Fermat and Lucas PRP! (1392.6408s+0.0182s)
[
TOP OF PAGE]
( © All rights reserved ) - Last modified : March 17, 2023.
Patrick De Geest - Belgium
- Short Bio - Some Pictures
E-mail address : pdg@worldofnumbers.com