(12*10^7-21)/99
*** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0
N=(12*10^7-21)/99
N=1212121
*** N is prime!
Time: 0 sec
(12*10^11-21)/99
*** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0
N=(12*10^11-21)/99
N=12121212121
Factor: 2^3 divides N - 1
Factor: 2 divides N + 1
Factor: 3 divides N - 1
Factor: 5 divides N - 1
Factor: 41 divides N - 1
Factorization results: F1=0.3661 F2=0.0299
F1=4920
F2=2
Pass: gcd(11^((N-1)/2) - 1, N) = 1: R20=12121212119
Pass: 11^(N-1) = 1 (mod N): R20=1
Fail: gcd(11^((N-1)/3) - 1, N) not = 1: R20=0
Pass: gcd(13^((N-1)/3) - 1, N) = 1: R20=4739065201
Pass: 13^(N-1) = 1 (mod N): R20=1
Pass: gcd(13^((N-1)/5) - 1, N) = 1: R20=3956800691
Pass: gcd(13^((N-1)/41) - 1, N) = 1: R20=2932767939
BLS tests passed: F1=0.3661 F2=0.0299
Main divisor test: F1=0.3661 F2=0.0000 G=0.3661 S=0.0000 T=1
G=4920
Main divisor test passed: 1/1
Final divisor test: F=0.3661 G=0.3661 H=1.0984 t=-1 a=1
Final divisor test passed: 3/3 r=3 i=0
*** N is prime!
Time: 0 sec
(12*10^1979-21)/99
== BPI:B262C002A3FC8 ============================================
TITANIX 2.1.0 - Primality Certificate
Started 07.04.2001 at 03:16:07 AM
Running time 54h 0mn 30s
Candidate certified prime
=================================================================
This SUPP was first proved prime by Carlos Rivera in 1997
and the prove was verified with Titanix by Hans Rosenthal.
The zipped file "121_989.zip" is 359 KB.
When unpacked the file "Titanix-B262C002A3FC8-001.out" is 841 KB
and is available on demand by simple email request.
(12*10^7809-21)/99
First tested by Carlos Rivera
PFGW 1.1 test for probable primality in bases
3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61 and 251
(12*10^7809-21)/99 is 3-PRP! (12.910000 seconds)
(12*10^7809-21)/99 is 5-PRP! (12.910000 seconds)
(12*10^7809-21)/99 is 7-PRP! (12.960000 seconds)
(12*10^7809-21)/99 is 11-PRP! (12.960000 seconds)
(12*10^7809-21)/99 is 13-PRP! (12.960000 seconds)
(12*10^7809-21)/99 is 17-PRP! (12.900000 seconds)
(12*10^7809-21)/99 is 19-PRP! (12.910000 seconds)
(12*10^7809-21)/99 is 23-PRP! (12.910000 seconds)
(12*10^7809-21)/99 is 29-PRP! (12.960000 seconds)
(12*10^7809-21)/99 is 31-PRP! (12.910000 seconds)
(12*10^7809-21)/99 is 37-PRP! (12.970000 seconds)
(12*10^7809-21)/99 is 41-PRP! (12.960000 seconds)
(12*10^7809-21)/99 is 43-PRP! (12.910000 seconds)
(12*10^7809-21)/99 is 47-PRP! (12.960000 seconds)
(12*10^7809-21)/99 is 53-PRP! (12.960000 seconds)
(12*10^7809-21)/99 is 59-PRP! (12.910000 seconds)
(12*10^7809-21)/99 is 61-PRP! (12.910000 seconds)
(12*10^7809-21)/99 is 251-PRP! (12.960000 seconds)
(12*10^14059-21)/99
By Hans Rosenthal
PFGW 1.1 test for probable primality in bases
3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61 and 251
(12*10^14059-21)/99 is 3-PRP! (52.400000 seconds)
(12*10^14059-21)/99 is 5-PRP! (52.510000 seconds)
(12*10^14059-21)/99 is 7-PRP! (52.460000 seconds)
(12*10^14059-21)/99 is 11-PRP! (52.510000 seconds)
(12*10^14059-21)/99 is 13-PRP! (52.450000 seconds)
(12*10^14059-21)/99 is 17-PRP! (52.510000 seconds)
(12*10^14059-21)/99 is 19-PRP! (52.400000 seconds)
(12*10^14059-21)/99 is 23-PRP! (52.510000 seconds)
(12*10^14059-21)/99 is 29-PRP! (52.400000 seconds)
(12*10^14059-21)/99 is 31-PRP! (52.510000 seconds)
(12*10^14059-21)/99 is 37-PRP! (52.400000 seconds)
(12*10^14059-21)/99 is 41-PRP! (52.350000 seconds)
(12*10^14059-21)/99 is 43-PRP! (52.400000 seconds)
(12*10^14059-21)/99 is 47-PRP! (52.350000 seconds)
(12*10^14059-21)/99 is 53-PRP! (52.400000 seconds)
(12*10^14059-21)/99 is 59-PRP! (52.620000 seconds)
(12*10^14059-21)/99 is 61-PRP! (52.450000 seconds)
(12*10^14059-21)/99 is 251-PRP! (52.350000 seconds)
(12*10^46499-21)/99
By Ray Chandler
PFGW Version 3.3.6.20100908.Win_Stable [GWNUM 25.14]
Primality testing (12*10^46499-21)/99 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 11
Running N+1 test using discriminant 19, base 9+sqrt(19)
(12*10^46499-21)/99 is Fermat and Lucas PRP! (811.3942s+0.0024s)
[ TOP OF PAGE]
World!Of Numbers ( 1996 - 2025 ) ( © All rights reserved ) - Last modified : March 17, 2023.
Patrick De Geest - Belgium - Short Bio - Some Pictures
E-mail address : pdg@worldofnumbers.com