7*(10^9-1)/9 - 10^4
== ID:B2813049EE978 =============================================

PRIMO 1.2.1 - Primality Certificate

-----------------------------------------------------------------
Candidate
-----------------------------------------------------------------
N = 777767777

Decimal size = 9
Binary size = 30

-----------------------------------------------------------------
1) SPP Test
-----------------------------------------------------------------
N = Candidate

Started 11/01/2002 09:32:03 PM
Running time < 1s

Candidate certified prime

=================================================================

Proved prime with 'Primo 1.2.1'
by Patrick De Geest using a Pentium III 650 MHz chip.


7*(10^11-1)/9 - 10^5
== ID:B2813049DC386 =============================================

PRIMO 1.2.1 - Primality Certificate

-----------------------------------------------------------------
Candidate
-----------------------------------------------------------------
N = 77777677777

Decimal size = 11
Binary size = 37

-----------------------------------------------------------------
1) SPP Test
-----------------------------------------------------------------
N = Candidate

Started 11/01/2002 09:30:48 PM
Running time < 1s

Candidate certified prime

=================================================================

Proved prime with 'Primo 1.2.1'
by Patrick De Geest using a Pentium III 650 MHz chip.


7*(10^17-1)/9 - 10^8
== ID:B2813049BED04 =============================================

PRIMO 1.2.1 - Primality Certificate

-----------------------------------------------------------------
Candidate
-----------------------------------------------------------------
N = 77777777677777777

Decimal size = 17
Binary size = 57

Started 11/01/2002 09:28:47 PM
Running time < 1s

Candidate certified prime

=================================================================

Proved prime with 'Primo 1.2.1'
by Patrick De Geest using a Pentium III 650 MHz chip.


7*(10^23-1)/9 - 10^11
== ID:B2813049A3DF6 =============================================

PRIMO 1.2.1 - Primality Certificate

-----------------------------------------------------------------
Candidate
-----------------------------------------------------------------
N = 77777777777677777777777

Decimal size = 23
Binary size = 77

Started 11/01/2002 09:26:57 PM
Running time < 1s

Candidate certified prime

=================================================================

Proved prime with 'Primo 1.2.1'
by Patrick De Geest using a Pentium III 650 MHz chip.


7*(10^2489-1)/9 - 10^1244
[PRIMO - Primality Certificate]
Version=2.0.0 - beta 3
Format=2
ID=B2800014790D6
Created=10/13/2002 05:57:47 AM
TestCount=371
Status=Candidate certified prime

[Running Times]
Initialization=13.54s
1stPhase=52h 20mn 25s
2ndPhase=4h 4mn 24s
Total=56h 25mn 3s

Proved prime with 'Primo 2.0.0 - beta 3' by Jeff Heleen
using a 1.33 GHz Athlon chip.
The file "Primo-B2800014790D6-001.out" is 1042 KB
and is available on demand by simple email request.

7*(10^3371-1)/9 - 10^1685

Darren Bedwell has a Primo certificate for 7*(10^3371-1)/9-10^1685.

http://zerosink.blogspot.com/2010/10/primo-certificate-for-7103371-19-101685.html

Certificate here


[PRIMO - Primality Certificate]
Version=3.0.9
WebSite=http://www.ellipsa.eu/
Format=3
ID=B3366018DAC88
Created=10/09/2010 07:14:28 AM
TestCount=463
Status=Candidate certified prime

[Comments]
Write any comment here

[Running Times]
Initialization=6.81s
1stPhase=29h 3mn 43s
2ndPhase=8h 53mn 12s
Total=37h 57mn 3s

[Candidate]
File=Z:\home\darren\Desktop\primo\work\77677.in
Expression=7*(10^3371-1)/9-10^1685
N$=39F64BB9E7CA2C84F83F5F8978BBE594694AC8AAA02D866B4A7B83FD294E8E57B9DBC3F05A8B5FFF5737BFA675064B59CA320149265B613EAA49AAD980CC2BA204984862C9092A1BB7F6B403C91A4C38E6D18584D81EFC295D7C328973A5CDC72C4760738AAC63F6174E502933E82C9143FDFD09085BA56DDE545A5ADCC9B67FC77FA694A7B204EEF524B0EE9AAAC484A0806FEAC90869FA39BC1019AAFA68B55FC25F2AEFE71DABC2C80F633487A58962B7DD165E210174B32244188F5181D8737F0AA19693BA0DF6450237454C73CBCD195C88938ED15FFD7201115A39694F9F89C3B16F074E78294B7EFD18FA75239074CB601CCBC05BA1E26295E9CC7FAC6F2AB4102A621FAB2E1D7E2CA3A3A8C9E85F3F6D7E63925EDA82ACFD085AEDD4BFE9082E5ED90D03013F3A1C84C823B70CB2714D14E6E78B27D50BE54F7DB38B6A58B8FC9EB21970B1D986CB968D968AA521BCDE646908BE9925B278931EED08C2741C8FFE1B988638440AD836289A02E3F3C3B9BFB3FDFD1F23E2733FCC5874B7B1ECEF57AF6A6950F25AF4C2C0FF9CDA2FE5A9180553519F82C4139F61C65B517F219B124D74A6C04750B2BBA0A29D4231A231959A87B7991B947254BFFBC0ACC46D21159449809E90B807398311DF356863053E4B9D0956FDCF0B7F4A7D2539F8A966C8BFA68E7524CDA4287EEF535C33635E13DB82A7ADAF44F56D62CECEC687037A2EF6E99D4CBBC8B48EA8AC25D4CF5D1218C6717670EAB885A0616B2E15D759A49C19CAD3A62F2011746C9C21086BC8DEACCBD50601F2AA800E14DDA0FE3DE093732B1EBB456CCD7F1CC37C1CFA5DB0960067C609F6291B1021044EE046DAD6B16F147F86271F4355CAE4B3908ACF1A1990361DFCFC9138367BB1015297E1E28C46CFE10C16644F8C564D9E32E6F500D736043A15C53070B6F10B6618816D9D88902FE5DA4E90477E0491CDA5D3B89B33FAC0543CCDD585A8883FD124DBE90B7DB8490E80B4EC28EEAFADEF611349BEF29CB3BC85FB545CF97ED05750A3EBC38BA0448D9A6F1487C1F42B7005A59C9AF069393F7C5E1D3917D342B0FD9217F775A606EF013D7AEFA131E17ED6B7895E00119BA9204759B1E8E550918A72B6FB4F6BA97AA948812E3EBC86518931630062FD356C0A186837C6C9C720E26871F32B197C7C971DE81F45D2183111100F6CEC96C2E24837C280FF9F24BFA696C07736B74A3F0111AA492ED9B4B1A98FA900A44D6FB920F5B5C97EEB08AFF7438380ABA1301976833121DB660D1787B43F574EAF5B903E9C2BBCF97EC108A98BAD1EEFDB5B02E7BC55708D7BFDE97F4BD79B1D201CBAD0723AE142AE3B160E18195131CC06644AE2AB9DE9261D0271A5DFE1136340A6C645A33B59A9BA214FAE50505A70FDFD8B87901BBEE4D52394CACCA2560C307867D2699C6E3E92A07186E7587526AC69718334EBCA0D41BCB39D0CE6559E18DD4F1AD7BE95C2A36E988B4252FA5B9505C63296ABD3728E6F96874EF5F57EC66BEDE3B759496F7FEE944A3251E973FA21DCC6049944238BFCF4C22E3B372FE2188059F8C155EF1C57565712DF5594853F76F51FB987B6CC89BEC5F761634A03C08887C4C8289844B6F68ED02D035A9B9E5966E19C5C5D794C5A5550286A15EBBCD013F6D6FD6478B7461B68FD757DD1C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71
HexadecimalSize=2800 DecimalSize=3371 BinarySize=11198

7*(10^4019-1)/9 - 10^2009

The near-repdigit palindrome wing prime 7*(10^4019-1)/9-10^2009
has been certified prime by Darren Bedwell using Primo
and published dd. Oct 26, 2010.
The certificate is here.


[PRIMO - Primality Certificate]
Version=3.0.9
WebSite=http://www.ellipsa.eu/
Format=3
ID=B336E027B2832
Created=10/17/2010 11:33:56 AM
TestCount=593
Status=Candidate certified prime

[Comments]
Write any comment here

[Running Times]
Initialization=10.37s
1stPhase=53h 45mn 12s
2ndPhase=14h 18mn 42s
Total=68h 4mn 4s

[Candidate]
File=Z:\home\darren\Desktop\primo\work\prp2009.in
Expression=7*(10^4019-1)/9-10^2009
N$=586DC148C542691CB9B3A896CD08BA5960A23F3882733245082A2D53FF15C0699B98495B7BE4884B7A83109C7F9CF5FD391CD397B530394947DC7CAC16BEFB864C98C70CEB2814723C559D4DC2C45C5C4E7475260A348D294DDDB79BEFE1B647EF93B24541502DAC0B5898E0381E30405D11AA0F9EBCA9F8D762D6783E029E0A019036D782D675083A0241030B625F594C260A723173D0E946D1AA6510D34A752D9116577097002DA83963C55BB24954E17EC460FF47A50F45C4D1D6780D59C6C5D92547200F9AF1B31CD97854C5DA38565A4BB19F623A958F64A22F62F50002A739FE2E14295F1427A8DC3CB5DF49C2F6644B6336C77E042549EE9FC1CB374DC066A378E6F2753978297DEEBBDB39155E2A9BACC125D5B496D1CE0A5B20DEAA03C36F4A8ABF2AC2AFE4349B0DD2DCC4739E0B2A8F9C7FD5E4488644E6C0DB02605A063FCEB535AC22C12B8670B33951A35D4609FC787C80CC3FE5B2EA89803E4ACB61BB6864067A0ABE8F4ADFC5EDB2959305E4E782C26EDDC7FC55AA60C1652FE55A6528F4351EE933160B7F9E737E63883F2B66A913057A579CBD5CFD29F2F79093174A93D052D467577B2543EDCDF4065FFA0D6C23C739DFA7B729ECD571733D1925FC472F53BA3E35A6C92B9A131290ECF4FEB36F774E32243AE08BF401423C39A2A61BA291D4AFDE31B1226483832735F241B9B3F32EFD91A2619ABAF7C33D2B735FAFB58DC7AE051F666F9169017327D58B417D753A53AE9A7625302A32E65595E098D657AC8D72E9C679B395204D3D528355B22E4A8CF7DACA67437A5FE82193B308C6233E1DA626080CED64A4B9E723C6C9438802A7A3D8BDC9DF84EBA3D6B2A7EEB86318F23A422750E98B5D9EF5B96BEBAAE7E89C6059BB660FA9730B3CE04FC69429DEBE9B0094001055952D59B083F52D9296B44CC85C67FD2F5B69DCDF38A02FC8E4519689831B0EDB3120FF42089783FFE75B67BDCE673A76D199075FAC10A9CCF996CECEF97BA7AF06DB81927D86E83FECBAB8D8FE9E28584432057CFD1BA490CE7347A0EE9481EDE90A7FEE50E1AD099A917C8D4378735245E94B12FFFA9DB052A1FB6B22B2F447E30F6F567A6C1980E7910C38A50A4D7431EA5796CAC57811FEF0328747BEE7C5E884DD4EA558DA05A7F40BB96463BCE78DA0D487A7198B907D4E3FD0DDBC68DA60B199850F88DD8A299C2EA4F1371A6CE39564866E312B7D01A7DA3F35BAF0A0DC1DF5F100477B4FDE011AB86E40A4E8EBFDD47B7666963DE99B29F9F652E41DAF6922F9F498114F951F7875D3917C75332ED57201AEC1BC89B74BD3B9C7939983C9430C5705955F2471682986FDAC56BA9D9A4421F1776AEC0A2E2462785A8116A59A05ECCFBC69E717E03FF3BD9594EC49FDB18282E25C3100E1C18496C6CB5CE85E1F67C5EFFBF42085219ED9AEE4DB876E4BB798DF78F1D2FF296C606DC685A160AF1EB26646C62685BF3A4087736EFE646B10196E07D9360FE4260E09D6125E91A45422A48EB721BFD795832221C0F60F5D0E56F6B74210F6516280DF1CCCEF8AEFEE9759778F4FF292F675341DFE6F7D31E6A789FF717971D3EF2A8A04688CD720CDBBDC28AB5AB6CE7579876C8B8803101A2647934E9BDB992DBF8C0CB25E915F28973D6D17102740A5FAED645FBFB21E0128C95DA9B91B7B7BC16497E39D21DA134292D0075FA0555655A2CE6E4C34443D79B4E03D1C070BB663CECC47735E5B1B2B37D3EBE2942735454117B5ED4009CAAF496EC070968C2CAA27017903601B1F1AD753E06D69168A671255200073DD933552F528DE78125CDF264947D3A1EC40239E7F77A090A0CCC23359A0C4640743F6C75C6BA902FCD7225F902A3C434ED545927CBE17BA9E7BB6333306AFE45E4084389E969C4869C98D17693CA1792BC99B0C3C54B42DC9A762818A2ED6156542B044D1FC6F296BE214E4050A3AB10C989E37387D6B00B26210C0A428162B08AA62F4F75F7D1C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71C71
HexadecimalSize=3338 DecimalSize=4019 BinarySize=13351


7*(10^29315-1)/9 - 10^14657
C:\pfgw>pfgw64 -q"7*(10^29315-1)/9 - 10^14657"
PFGW Version 4.0.3.64BIT.20220704.Win_Dev [GWNUM 29.8]

7*(10^29315-1)/9 - 10^14657 is 3-PRP! (4.3185s+0.0011s)


7*(10^30237-1)/9 - 10^15118
C:\pfgw>pfgw64 -q"7*(10^30237-1)/9 - 10^15118"
PFGW Version 4.0.3.64BIT.20220704.Win_Dev [GWNUM 29.8]

7*(10^30237-1)/9 - 10^15118 is 3-PRP! (4.7284s+0.0010s)


7*(10^40665-1)/9 - 10^20332
C:\Users\Bob\Documents\IntSeq\Details>pfgw64 -q"(7*10^(2*20332+1)-9*10^20332-7)/9" -tc
PFGW Version 3.7.7.64BIT.20130722.Win_Dev [GWNUM 27.11]

Primality testing (7*10^(2*20332+1)-9*10^20332-7)/9 [N-1/N+1, Brillhart-Lehmer-Selfridge]            
Running N-1 test using base 3
Running N+1 test using discriminant 7, base 1+sqrt(7)
Calling N-1 BLS with factored part 0.05% and helper 0.01% (0.17% proof)                              
(7*10^(2*20332+1)-9*10^20332-7)/9 is Fermat and Lucas PRP! (242.3012s+0.0118s) 


7*(10^101661-1)/9 - 10^50830
pfgw64 -tc -q"(7*10^(2*50830+1)-9*10^50830-7)/9"
PFGW Version 3.7.7.64BIT.20130722.Win_Dev [GWNUM 27.11]

Primality testing (7*10^(2*50830+1)-9*10^50830-7)/9 [N-1/N+1, Brillhart-Lehmer-Selfridge]            
Running N-1 test using base 3
Running N+1 test using discriminant 7, base 1+sqrt(7)
Calling N-1 BLS with factored part 0.01% and helper 0.00% (0.02% proof)
(7*10^(2*50830+1)-9*10^50830-7)/9 is Fermat and Lucas PRP! (1564.2487s+0.0560s)  


7*(10^150125-1)/9 - 10^75062
pfgw64 -f0 -q"(7*10^(2*75062+1)-9*10^75062-7)/9" -tc
PFGW Version 3.7.7.64BIT.20130722.Win_Dev [GWNUM 27.11]

No factoring at all, not even trivial division
Primality testing (7*10^(2*75062+1)-9*10^75062-7)/9 [N-1/N+1, Brillhart-Lehmer-Selfridge]            
Running N-1 test using base 5
Running N-1 test using base 7
Running N-1 test using base 11
Running N-1 test using base 13
Running N-1 test using base 17
Running N+1 test using discriminant 23, base 1+sqrt(23)
Calling N+1 BLS with factored part 0.01% and helper 0.00% (0.02% proof)
(7*10^(2*75062+1)-9*10^75062-7)/9 is Fermat and Lucas PRP! (6835.5344s+0.0236s)                









 

[up TOP OF PAGE]


( © All rights reserved ) - Last modified : December 7, 2023.

Patrick De Geest - Belgium flag - Short Bio - Some Pictures
E-mail address : pdg@worldofnumbers.com