8*(10^7-1)/9 + (10^6+1)
run"aprt-cle
Test number N=? 9888889
Preparatory test
Pass !
9888889 is prime.
0:00:00
OK
Proved prime with 'Ubasic - APRT-CLE.UB'
by Patrick De Geest using a Pentium III 650 MHz chip.
8*(10^73-1)/9 + (10^72+1)
== ID:B28690072192E =============================================
PRIMO 1.2.1 - Primality Certificate
-----------------------------------------------------------------
Candidate
-----------------------------------------------------------------
N = 988888888888888888888888888888888888888888888888888888888888\
8888888888889
Decimal size = 73
Binary size = 243
Started 01/26/2003 02:04:37 AM
Running time < 1s
Candidate certified prime
=================================================================
Proved prime with 'Primo 1.2.1'
by Patrick De Geest using a Pentium III 650 MHz chip.
8*(10^97-1)/9 + (10^96+1)
== ID:B286900921A4E =============================================
PRIMO 1.2.1 - Primality Certificate
-----------------------------------------------------------------
Candidate
-----------------------------------------------------------------
N = 988888888888888888888888888888888888888888888888888888888888\
8888888888888888888888888888888888889
Decimal size = 97
Binary size = 323
Started 01/26/2003 02:39:34 AM
Running time < 1s
Candidate certified prime
=================================================================
Proved prime with 'Primo 1.2.1'
by Patrick De Geest using a Pentium III 650 MHz chip.
8*(10^115-1)/9 + (10^114+1)
== ID:B286903549DCE =============================================
PRIMO 1.2.1 - Primality Certificate
-----------------------------------------------------------------
Candidate
-----------------------------------------------------------------
N = 988888888888888888888888888888888888888888888888888888888888\
8888888888888888888888888888888888888888888888888888889
Decimal size = 115
Binary size = 383
Started 01/26/2003 03:31:17 PM
Running time 1s
Candidate certified prime
=================================================================
Proved prime with 'Primo 1.2.1'
by Patrick De Geest using a Pentium III 650 MHz chip.
8*(10^205-1)/9 + (10^204+1)
== ID:B286905243F4C =============================================
PRIMO 1.2.1 - Primality Certificate
-----------------------------------------------------------------
Candidate
-----------------------------------------------------------------
N = 988888888888888888888888888888888888888888888888888888888888\
888888888888888888888888888888888888888888888888888888888888\
888888888888888888888888888888888888888888888888888888888888\
8888888888888888888888889
Decimal size = 205
Binary size = 681
Started 01/26/2003 11:57:41 PM
Running time 10s
Candidate certified prime
=================================================================
Proved prime with 'Primo 1.2.1'
by Patrick De Geest using a Pentium III 650 MHz chip.
8*(10^985-1)/9 + (10^984+1)
[PRIMO - Primality Certificate]
Version=2.0.0 - beta 3
Format=2
ID=B286F040DEDC4
Created=02/01/2003 06:53:41 PM
TestCount=166
Status=Candidate certified prime
[Candidate]
File=C:\Program Files\Primo200\pdp989_985.in
Expression=8*(10^985-1)/9 + (10^(983+1)+1)
N$=10F2B857B83F7182AA745F27511EF14A60FECF7788B596F554186F337E56A7EA6B7A680DFCE890C066F6D892C962F54E\
F780111B4950D3006142109A29CFFB0EE6FA466321F9F9459E55EDC4AECF9BDA8946A507E0C4309725DE5E7CD8CE516B4E0\
1F283380A1695621E165D50F202151136BFD673E9D92A4A636670B42C933A6E3FE61535F54D1EA7D2CF0F95C93DD507FB65\
6068CDCCEB853E46362446F106390079D6DDF0507E037B53E8D0E555B16194942A1A6CA0CB4CAF20F1E9965A7A0F76E3EC3\
E2EE1DBB89380EE43E0A7A5B1D429D372E494752E15B66DDAF379626DD54CB44BA4FA32F3A39FD6E906A4DCFEEB0B0F43AF\
88C6988C2398A9879743AD0604E02D35A07491B812C9891A0171F305729915F4F7FBF3F53344EE0A9E38E38E38E38E38E38\
E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38\
E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38\
E38E38E38E38E38E38E38E38E38E39 |
HexadecimalSize=819
DecimalSize=985
BinarySize=3273
[Running Times]
Initialization=3.43s
1stPhase=2h 18mn 12s
2ndPhase=16mn 51s
Total=2h 35mn 8s
Proved prime with 'Primo 2.0.0 - beta 3'
by Patrick De Geest using a Pentium III 650 MHz chip.
8*(10^1227-1)/9 + (10^1226+1)
[PRIMO - Primality Certificate]
Version=2.1.1
WebSite=http://www.ellipsa.net/
Format=3
ID=B29050085869E
Created=07/01/2003 02:25:52 AM
TestCount=182
Status=Candidate certified prime
[Running Times]
Initialization=1.89s
1stPhase=2h 15mn 4s
2ndPhase=16mn 10s
Total=2h 31mn 17s
[Candidate]
File=C:\Primo IN & OUT files\PDP1227.in
Expression=8*(10^1227-1)/9+(10^1226+1)
N$=FE2BA59D45B3365480740A06768645411C8A6E95767033509DB9E5EA0B77508F88BE49566DB6650D3CC46AAA70CB8996\
8B3B3C4917F2F75C1DD771D3DFBF8FD070AA91A86E7867B1A8BA91B7A5A716D5C8C65F416AF07AE242B3993E11581E3FBA7\
8FDF2DC34A2CB9066FD2011437DDC55D15B202E79C6880751C8B7FB7B6733FC813B6480219B8296EBB4EAB04CDFE3076532\
4502DCC7BE2E2C9C14AE6D2100E4C40558839B781C6E2DC0674E41F712FC6E0D367AE9818221F404B260765CA4FAE12CCC9\
8D5E5506EF4D00290BCEFB4017BC3684E2F08ADBD97EEE18818E9816CFC81A501F33BC2F20AF672A16A796C2C7F47CACFE0\
F8ED17817BF1B4ACA2596A2382EB5B2013BBE81672E3B13100ED6F4467EF26235DFCBD73388CD74F951E11BEDF8A5212991\
2CCA54AF5D0494298348921610E8B122FD8D87D560C91AC08C4626E459B63A080A0A6FAA20B1325F4FA17DC3EB912C54995\
F82445228BE1C3E190CBB5CE38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E\
38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E\
38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E38E\
38E38E38E38E38E38E38E38E38E38E39 |
HexadecimalSize=1019
DecimalSize=1227
BinarySize=4076
Proved prime with 'Primo 2.1.1'
by Patrick De Geest using a 3000 MHz Pentium 4 cpu.
Certificate Primo-B29050085869E-01.out available by
simple email request (173 KB).
8*(10^20721-1)/9 + (10^20720+1)
3-PRP!
8*(10^133581-1)/9 + (10^133580+1)
By Serge Batalov dd. May 15, 2010.
UID: Batalov/Q6600F, 89*10^133580+1/9 is a probable prime! Wd1: 1E7E05E5,00000000
Tools : srsieve, sr1sieve, Prime95 and PFGW 3.3.3
8*(10^411591-1)/9 + (10^411590+1)
By Serge Batalov dd. September 21, 2014.
(89*10^411590+1)/9 is base 3-Strong Fermat PRP! (411591 decimal digits) Time : 971.723 sec.
Tools used: srsieve and LLR; validated in a few bases with PFGW.
[
TOP OF PAGE]
( © All rights reserved ) - Last modified : March 16, 2023.
Patrick De Geest - Belgium
- Short Bio - Some Pictures
E-mail address : pdg@worldofnumbers.com