World!Of Numbers | |||
Palindromic Primes where the sum over all digits is a minimum | |||
1 2 3 4 5 6 bonham2 |
The sum over all digits in these primes is always 5 which except for
single digit primes (2, 3) and 11 and 101 would seem to be the smallest possible.
These palprimes might have the highest percentage of zeros and involve the smallest
number of different digits. The second type, N(n) has a maximum of one prime
with a fixed number of digits while the first type, N(n,k), can have more than one prime
with the same number of digits. The largest prime of the first type I have found is a
meager 5000 digits with the greatest number of primes with the same number of digits equal to 5.
The number of primes of the first type found in a constant search area of n [n(max) n(min) = 200]
is nearly a constant value (~137). The 19th prime of type 2 is a little over 11000 digits.
I think I have a partial proof (conjecture?) that there are no primes with a sum over digits of 2
beyond 101 and proofs that palindromes with a sum over all digits of 3 and 4 do not contain primes.
Email Russell Bonham
Palprimes where the sum over all digits is a minimum The minimum sum over all digits of palindrome primes is 2, The palindromes N2[m] = 10m + 1 have no primes for m > 2. Conjecture and partial proof: Since
it can be concluded that N2[2m + 1] = 102m+1 + 1 contains no primes for m > 0. The lack of primality of D(k) was tested by calculating the smallest Palindromes with a sum over all digits equal to 3 are not prime. Proof: The palindrome numbers N3[m] = 102m + 10m + 1 have a GCD of 3 Palindromes with a sum over all digits equal to 4 are not prime. Proof: Palindrome numbers with a sum over all digits of 4 can be For the sum over all digits of 5 there are two possible types of palindrome numbers. so that multiple primes with the same number of digits are possible in the first case but only one prime can occur with the same number of digits. The second case has a slightly larger percentage of zeros than the first. The results of prime searches for these two types of palindrome numbers are summarized in the Tables 25 shown below. These primes have the largest percentage of zeros, the fewest number of primes with the same number of total digits, the minimum number of different digits (2 and 3), and except for the primes 11 and 101 the smallest value for the sum over all integers (5). In the case of N5(n,k) the number of primes found for a search from n(min) to n(max) which searches [n(max) n(min)][n(max) + n(min) 1]/2 numbers was found to be the nearly constant value of 136 ± 8 for n(max) n(min) = 199. The paucity of multiple palprimes with the same number of digits can be best appreciated by noting that non-palindrome primes, with 5 ones and the remaining integers all zeros, with only 401 total digits have 50705 primes with 10467798 numbers searched. PRIME SEARCHES FOR PRIMES OF THE GENERALIZED FERMAT NUMBERS OF BASE 10 N(a, n) = (a^(2^n)) + 1 with a an integer it can be shown that N(a, n+k) = (N(a, n) 1)^(2^k) + 1
Conclusion
|
Visualizations
N(n,k) = N( { from 2 to 21 } , 1 ) 11111 1101011 110010011 11000100011 1100001000011 110000010000011 11000000100000011 1100000001000000011 110000000010000000011 11000000000100000000011 1100000000001000000000011 110000000000010000000000011 11000000000000100000000000011 1100000000000001000000000000011 110000000000000010000000000000011 11000000000000000100000000000000011 1100000000000000001000000000000000011 110000000000000000010000000000000000011 11000000000000000000100000000000000000011 1100000000000000000001000000000000000000011 Probable Prime set [ n = 10, 770, 1700, 3411, 3655,
]
N(n,k) = N( { from 3 to 22 } , 2 ) 1011101 101010101 10100100101 1010001000101 101000010000101 10100000100000101 1010000001000000101 101000000010000000101 10100000000100000000101 1010000000001000000000101 101000000000010000000000101 10100000000000100000000000101 1010000000000001000000000000101 101000000000000010000000000000101 10100000000000000100000000000000101 1010000000000000001000000000000000101 101000000000000000010000000000000000101 10100000000000000000100000000000000000101 1010000000000000000001000000000000000000101 101000000000000000000010000000000000000000101 Probable Prime set [ n = 7, 10, 16, 22, 61, 630, 4315,
]
N(n,k) = N( { from 4 to 23 } , 3 ) 100111001 10010101001 1001001001001 100100010001001 10010000100001001 1001000001000001001 100100000010000001001 10010000000100000001001 1001000000001000000001001 100100000000010000000001001 10010000000000100000000001001 1001000000000001000000000001001 100100000000000010000000000001001 10010000000000000100000000000001001 1001000000000000001000000000000001001 100100000000000000010000000000000001001 10010000000000000000100000000000000001001 1001000000000000000001000000000000000001001 100100000000000000000010000000000000000001001 10010000000000000000000100000000000000000001001 Probable Prime set
[ n = 4, 73, 79, 168, 303, 370, 384, 484, 1514, 1614, 2833, 5694, 5899, ] N(n,k) = N( { from 5 to 24 } , 4 ) 10001110001 1000101010001 100010010010001 10001000100010001 1000100001000010001 100010000010000010001 10001000000100000010001 1000100000001000000010001 100010000000010000000010001 10001000000000100000000010001 1000100000000001000000000010001 100010000000000010000000000010001 10001000000000000100000000000010001 1000100000000000001000000000000010001 100010000000000000010000000000000010001 10001000000000000000100000000000000010001 1000100000000000000001000000000000000010001 100010000000000000000010000000000000000010001 10001000000000000000000100000000000000000010001 1000100000000000000000001000000000000000000010001 Probable Prime set [ n = 100, 484,
]
N(n,k) = N( { from 6 to 25 } , 5 ) 1000011100001 100001010100001 10000100100100001 1000010001000100001 100001000010000100001 10000100000100000100001 1000010000001000000100001 100001000000010000000100001 10000100000000100000000100001 1000010000000001000000000100001 100001000000000010000000000100001 10000100000000000100000000000100001 1000010000000000001000000000000100001 100001000000000000010000000000000100001 10000100000000000000100000000000000100001 1000010000000000000001000000000000000100001 100001000000000000000010000000000000000100001 10000100000000000000000100000000000000000100001 1000010000000000000000001000000000000000000100001 100001000000000000000000010000000000000000000100001 Probable Prime set [ n = 11, 40, 83, 459, 589, 3253,
]
N(n,k) = N( { from 7 to 25 } , 6 ) 100000111000001 10000010101000001 1000001001001000001 100000100010001000001 10000010000100001000001 1000001000001000001000001 100000100000010000001000001 10000010000000100000001000001 1000001000000001000000001000001 100000100000000010000000001000001 10000010000000000100000000001000001 1000001000000000001000000000001000001 100000100000000000010000000000001000001 10000010000000000000100000000000001000001 1000001000000000000001000000000000001000001 100000100000000000000010000000000000001000001 10000010000000000000000100000000000000001000001 1000001000000000000000001000000000000000001000001 100000100000000000000000010000000000000000001000001 Probable Prime set
[ n = 8, 13, 18, 50, 235, 740, 1025, 4373, 4783, 6150, 6680, 8905, ] N(n,k) = N( { from 8 to 25 } , 7 ) 10000001110000001 1000000101010000001 100000010010010000001 10000001000100010000001 1000000100001000010000001 100000010000010000010000001 10000001000000100000010000001 1000000100000001000000010000001 100000010000000010000000010000001 10000001000000000100000000010000001 1000000100000000001000000000010000001 100000010000000000010000000000010000001 10000001000000000000100000000000010000001 1000000100000000000001000000000000010000001 100000010000000000000010000000000000010000001 10000001000000000000000100000000000000010000001 1000000100000000000000001000000000000000010000001 Probable Prime set [ n = 71, 90, 105, 260, 6942,
]
N(n,k) = N( { from 9 to 25 } , 8 ) 1000000011100000001 100000001010100000001 10000000100100100000001 1000000010001000100000001 100000001000010000100000001 10000000100000100000100000001 1000000010000001000000100000001 100000001000000010000000100000001 10000000100000000100000000100000001 1000000010000000001000000000100000001 100000001000000000010000000000100000001 10000000100000000000100000000000100000001 1000000010000000000001000000000000100000001 100000001000000000000010000000000000100000001 10000000100000000000000100000000000000100000001 1000000010000000000000001000000000000000100000001 Probable Prime set [ n = 103, 295,
]
N(n,k) = N( { from 10 to 25 } , 9 ) 100000000111000000001 10000000010101000000001 1000000001001001000000001 100000000100010001000000001 10000000010000100001000000001 1000000001000001000001000000001 100000000100000010000001000000001 10000000010000000100000001000000001 1000000001000000001000000001000000001 100000000100000000010000000001000000001 10000000010000000000100000000001000000001 1000000001000000000001000000000001000000001 100000000100000000000010000000000001000000001 10000000010000000000000100000000000001000000001 1000000001000000000000001000000000000001000000001 Probable Prime set [ n = 89, 200, 225, 227, 2624,
]
ps. for k equal from 2 to 9 all searches went up to n = 10000. N(n) = 102n + 3*10n + 1 N( from 1 to 25 ) 131 10301 1003001 100030001 10000300001 1000003000001 100000030000001 10000000300000001 1000000003000000001 100000000030000000001 10000000000300000000001 1000000000003000000000001 100000000000030000000000001 10000000000000300000000000001 1000000000000003000000000000001 100000000000000030000000000000001 10000000000000000300000000000000001 1000000000000000003000000000000000001 100000000000000000030000000000000000001 10000000000000000000300000000000000000001 1000000000000000000003000000000000000000001 100000000000000000000030000000000000000000001 10000000000000000000000300000000000000000000001 1000000000000000000000003000000000000000000000001 100000000000000000000000030000000000000000000000001 |
[ TOP OF PAGE]