\(164=17+18+19+20+21+22+23+24\) (som van opeenvolgende gehele getallen)

\(164=38+40+42+44\) (som van opeenvolgende pare getallen)

\(164=81+83+85\) (som van opeenvolgende onpare getallen)

\(164\mathbf{\color{blue}{\;=\;}}3+6+10+15+21+28+36+45\mathbf{\color{blue}{\;=\;}}28+36+45+55\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~D(2)+D(3)+D(4)+D(5)+D(6)+D(7)+D(8)+D(9)\mathbf{\color{blue}{\;=\;}}D(7)+D(8)+D(9)+D(10)\)

\(\qquad~~~~\)(som van opeenvolgende driehoeksgetallen op twee wijzen)

\(164=3^2+5^2+7^2+9^2\) (som van kwadraten van opeenvolgende onpare getallen)

\(164=((0;0;8;10)\,(0;2;4;12)\,(0;6;8;8)\,(1;1;9;9)\,(3;3;5;11)\,(3;5;7;9))\lower2pt{\Large{\color{teal}{➋}}}\to\{\#6\}\)

\(164=((0;0;0;0;1;2;3;4;4)\,(0;0;1;1;1;1;2;3;5)\,(0;1;1;3;3;3;3;3;3)\,(1;1;1;2;2;3;3;3;4))\lower2pt{\Large{\color{teal}{➌}}}\to\{\#4\}\)

\(164=2^4+3^3+11^2\)

\(164\mathbf{\color{blue}{\;=\;}}[2^6][4^3][8^2]+10^2\mathbf{\color{blue}{\;=\;}}2^7+6^2\mathbf{\color{blue}{\;=\;}}14^2-2^5\mathbf{\color{blue}{\;=\;}}17^2-5^3\mathbf{\color{blue}{\;=\;}}26^2-[2^9][8^3]\mathbf{\color{blue}{\;=\;}}42^2-40^2\)

164.1

\(164\mathbf{\color{blue}{\;=\;}}\)(som van drie derdemachten)

\(\qquad~~~~15\) oplossingen bekend

\(\qquad~~~~\)References Sum of Three Cubes

\(\qquad~~~~\bbox[3px,border:1px solid]{(-45)^3+(-47)^3+58^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{(-59)^3+(-66)^3+79^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{(-3531)^3+(-14993)^3+15058^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{(-15123)^3+(-42089)^3+42730^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{6421^3+72039^3+(-72056)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{117625^3+173086^3+(-189573)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{(-180599)^3+(-219516)^3+254419^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{(-1059392)^3+(-1838975)^3+1949403^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{(-5691489)^3+(-9278051)^3+9943144^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{(-238019885)^3+(-360184247)^3+391948008^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{(-5739721277)^3+(-6394880280)^3+7666538713^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{(-8111142521)^3+(-31176380427)^3+31358325952^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{(-33997778448035)^3+(-37878618662433)^3+45410911301176^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{34277051965510^3+43587699589855^3+(-49743270024171)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{35319585975391^3+44415735620229^3+(-50875476547166)^3}\mathbf{\color{blue}{\;=\;}}\)

\(164\mathbf{\color{blue}{\;=\;}}\)(som van vijf vijfdemachten)

\(\qquad~~~~\bbox[3px,border:1px blue solid]{(-3)^5+(-6)^5+(-8)^5+(-9)^5+10^5}\)

164.2

\(164^2=45^2+160^2-27^2\)

164.3

\(164^2\mathbf{\color{blue}{\;=\;}}[6^4][36^2]+160^2\mathbf{\color{blue}{\;=\;}}41^3-205^2\mathbf{\color{blue}{\;=\;}}58^4-3360^2\mathbf{\color{blue}{\;=\;}}205^2-123^2\mathbf{\color{blue}{\;=\;}}1685^2-1677^2\mathbf{\color{blue}{\;=\;}}3364^2-3360^2\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\;6725^2-6723^2\)

\(164^3\mathbf{\color{blue}{\;=\;}}920^2+1888^2\mathbf{\color{blue}{\;=\;}}1312^2+1640^2\mathbf{\color{blue}{\;=\;}}2337^2-1025^2\mathbf{\color{blue}{\;=\;}}3690^2-3034^2\mathbf{\color{blue}{\;=\;}}6888^2-6560^2\mathbf{\color{blue}{\;=\;}}\cdots\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\;\bbox[2px,border:1px brown dashed]{13530^2-13366^2}\)

164.4
Met de cijfers \(1,6,4\) kan men \(4\) kwadraten maken : \(1,4,16,64\) (zie ook ) 164.5

Als som met de vier operatoren \(+-*\;/\)
\(164=(41+1)+(41-1)+(41*1)+(41/1)\)

164.6
\(164\) als resultaat met breuken waarin de cijfers van \(1\) tot \(9\) exact één keer voorkomen : (\(1\) oplossing) :
\(123984/756=164\)
\(164\) als resultaat met breuken waarin de cijfers van \(0\) tot \(9\) exact één keer voorkomen : (\(5\) oplossingen) :
\(320784/1956=325704/1986=345876/2109=651408/3972=879204/5361=164\)
164.7
Men moet \(164\) tot minimaal de \(59201\)ste macht verheffen opdat in de decimale expansie exact \(164\) \(164\)'s verschijnen.
Terloops : \(164\)\(^{59201}\) heeft een lengte van \(131121\) cijfers.
164.8

Voor \(n=164~~\) geldt \(~~{\large\phi}(n)={\large\phi}(n+1) ~~\to~~ {\large\phi}(164)={\large\phi}(165)=80~~~~({\large\phi}\) of  'phi' staat voor totiënt)

Zie ook bij en   (OEIS A001274)

164.9
\(164\) is de kleinste aaneenschakeling van twee kwadraten op twee verschillende wijzen : \(1\)^^\(64\) en \(16\)^^\(4\). 164.10

Voor \(n=164~~\) geldt \(~~{\large\sigma}(n)={\large\sigma}(n+30) ~~\to~~ {\large\sigma}(164)={\large\sigma}(194)=294~~~~({\large\sigma}\) of  'sigma' staat voor som der delers)

\(164\) is de derde oplossing uit de reeks \(88,161,164,209,221,275,279,376,497,581,707,869,910,913,1015,\ldots\).

Zie bvb. bij

164.11

\(\begin{align}164\mathbf{\color{blue}{\;=\;}}\left({\frac{311155001}{46913867}}\right)^3-\left({\frac{236283589}{46913867}}\right)^3\end{align}\)

(Integral Sum of Two Rational Cubes) (OEIS A020898) (OEIS A228499)

\((x^3+y^3)/z^3=n~\to~\) [x waarde] (OEIS A190356)  [y waarde] (OEIS A190580)  [z waarde] (OEIS A190581)

Kleinste positieve oplossingen \(~\to~\) [x waarde] (OEIS A254326)  [y waarde] (OEIS A254324)

164.12

\(b\mathbf{\color{blue}{\;=\;}}164\to\)
\(b\)\(^{2}\)\(+b\)\(^{5}\)\(+b\)\(^{7}\)\(+b\)\(^{9}\)\(+b\)\(^{9}\)\(+b\)\(^{3}\)\(+b\)\(^{3}\)\(+b\)\(^{1}\)\(+b\)\(^{1}\)\(+b\)\(^{4}\)\(+b\)\(^{3}\)\(+b\)\(^{5}\)\(+b\)\(^{9}\)\(+b\)\(^{1}\)\(+b\)\(^{1}\)\(+b\)\(^{7}\)\(+b\)\(^{3}\)\(+b\)\(^{1}\)\(+b\)\(^{2}\)\(+b\)\(^{8}\)\(+b\)\(^{4}\)\(\mathbf{\color{blue}{\;=\;}}257993311435911731284~~\)
(OEIS A236067)

164.13
Schakelaar
\(\mathbf[0\gets\to1000\mathbf]\)
Allemaal Getallen

\(\Huge\bbox[border:0]{⏮}\)

\(\Huge\bbox[border:0]{⯬}\)

\(\Huge\bbox[border:0]{⏴}\)

\(\Huge\bbox[border:0]{⏵}\)

\(\Huge\bbox[border:0]{⯮}\)

\(\Huge\bbox[border:0]{⏭}\)


\(164\)\(2^2*41\)\(6\)\(294\)
\(1,2,4,41,82,164\)
\(10100100_2\)\(244_8\)A\(4_{16}\)
   

Uit de collectie 'Allemaal Getallen' van Ir. Jos Heynderickx
Toevoegingen & Bewerking & Layout door Patrick De Geest (email)
Laatste update 12 november 2024