Sums of three cubes
https://en.wikipedia.org/wiki/Sums_of_three_cubes | Ref.A1 |
Summe von drei Kubikzahlen
https://de.wikipedia.org/wiki/Summe_von_drei_Kubikzahlen | Ref.A2 |
Cubic Number
https://mathworld.wolfram.com/CubicNumber.html | Ref.A3 |
Numbers that are not congruent to 4 or 5 mod 9
https://oeis.org/A060464 | Ref.A4 |
Sums of integer cubes
https://www.pnas.org/doi/10.1073/pnas.2103697118 | Ref.A5 |
Why the Sum of Three Cubes Is a Hard Math Problem
https://www.quantamagazine.org/why-the-sum-of-three-cubes-is-a-hard-math-problem-20191105/ | Ref.A6 |
Hilbert's tenth problem
https://en.wikipedia.org/wiki/Hilbert%27s_tenth_problem | Ref.A7 |
(CUBES) N = x^3 + y^3 + z^3
http://villemin.gerard.free.fr/aMaths/Partition/PartCube.htm | Ref.A8 |
The uncracked problem with 33
https://www.youtube.com/watch?v=wymmCdLdPvM | Ref.B1 |
74 is Cracked
https://www.youtube.com/watch?v=_-M_3oV75Lw | Ref.B2 |
42 is the new 33
https://www.youtube.com/watch?v=ASoz_NuIvP0 | Ref.B3 |
The Mystery of 42 is Solved
https://www.youtube.com/watch?v=zyG8Vlw5aAw | Ref.B4 |
3 as the sum of 3 cubes
https://www.youtube.com/watch?v=GXhzZAem7k0 | Ref.B5 |
569936821221962380720
https://www.youtube.com/watch?v=vv0bHK44Q1s | Ref.B6 |
SUM OF THREE CUBES (irrational solutions)
https://www.youtube.com/watch?v=KkHGFLiEltE | Ref.B7 |
SUMS OF THREE CUBES (Sutherland_Recording)
https://drive.google.com/file/d/1SgOE6Zzy0mJT7omDF_9txd7yWYAxw-IH/view | Ref.B8 |
List of solutions of x^3 + y^3 + z^3 = k for k < 1000
https://mysite.science.uottawa.ca/gwalsh/sumofthreecubes20160426.txt | Ref.C1 |
List of solutions of x^3 + y^3 + z^3 = k for k < 10000
https://gist.githubusercontent.com/Centrinia/51789c2ebdbc74098faefc7cdf68e1a4/raw/ | Ref.C2 |
Primitieve gehele oplossingen van x^3+y^3+z^3=n (n in [1..1000])
http://www.kaynet.or.jp/~kay/misc/aa3-1000.html | Ref.C3 |
Solutions of n=x3+y3+z3 How to search the solutions of n=x3+y3+z3 for 0 ⩽ n ⩽ 10000 Partial listings : | Ref.C4 |
Sums of cubes
https://math.mit.edu/~drew/sumsofcubes.html | Ref.C5 |
threecubes
http://cr.yp.to/threecubes.html | Ref.C6 |
Solutions of the Diophantine Equation x3+y3+z3=k
https://tomrocksmaths.com/wp-content/uploads/2022/10/journal-of-london-math-soc-january-1955-miller- | Ref.D1 |
Undecidability in Number Theory (pages 1 up to 4)
https://www.cs.drexel.edu/~kn33/cs525_winter_2015_e/ | Ref.D2 |
On Sums of Three Integral Cubes
https://personal.science.psu.edu/lxv1/113P.pdf | Ref.D3 |
On Solving the Diophantine Equation x3 + y3 + z3 = k on a Vector Computer
http://euler.free.fr/docs/HLR93.pdf | Ref.D4 |
Newer Sums of Three Cubes
https://arxiv.org/pdf/1604.07746.pdf | Ref.D5 |
Solutions of the Diophantine Equation x3 + y3 = z3 d
https://cr.yp.to/bib/1964/gardiner.pdf | Ref.D6 |
Sums of three cubes
https://math.mit.edu/~drew/NTW2020.pdf | Ref.D7 |
The Density of Zeros of Forms for which Weak Approximations Fails
https://www.researchgate.net/publication/237335750_ The_Density_of_Zeros_of_Forms_for_which_Weak_Approximation_Fails | Ref.D8 |
Cracking the problem with 33
https://people.maths.bris.ac.uk/~maarb/papers/cubesv1.pdf | Ref.D9 |
On the Integer Solutions of the Equation x2+y2+z2+2xyz = n
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms/s1-28.4.500 | Ref.D10 |
Schakelaar \(\mathbf[0\gets\to1000\mathbf]\) “Allemaal Getallen” |
---|
Referenties Sum of Three Cubes | |||
Uit de collectie 'Allemaal Getallen' van Ir. Jos Heynderickx Toevoegingen & Bewerking & Layout door Patrick De Geest (email) Laatste update 21 januari 2025 |