\(140\mathbf{\color{blue}{\;=\;}}14+15+16+17+18+19+20+21\mathbf{\color{blue}{\;=\;}}17+18+19+20+21+22+23\mathbf{\color{blue}{\;=\;}}26+27+28+29+30\)

\(\qquad~~~~\)(som van opeenvolgende gehele getallen)

\(140\mathbf{\color{blue}{\;=\;}}14+16+18+20+22+24+26\mathbf{\color{blue}{\;=\;}}24+26+28+30+32\mathbf{\color{blue}{\;=\;}}32+34+36+38\)

\(\qquad~~~~\)(som van opeenvolgende pare getallen)

\(140\mathbf{\color{blue}{\;=\;}}5+7+9+11+13+15+17+19+21+23\mathbf{\color{blue}{\;=\;}}69+71\) (som van opeenvolgende onpare getallen)

\(140=5*(1+2+3+4+5+6+7)\) (vijf maal de som van opeenvolgende gehele getallen)

\(140\mathbf{\color{blue}{\;=\;}}1^2+2^2+3^2+4^2+5^2+6^2+7^2\mathbf{\color{blue}{\;=\;}}1+4+9+16+25+36+49\)

\(\qquad~~~~\)(som van de kwadraten van opeenvolgende gehele getallen)

\(140=((0;2;6;10)\,(1;3;3;11)\,(1;3;7;9)\,(2;6;6;8)\,(3;5;5;9))\lower2pt{\Large{\color{teal}{➋}}}\to\{\#5\}\)

\(140=((0;0;1;1;1;1;2;4;4)\,(0;2;2;2;2;3;3;3;3)\,(1;1;1;1;1;1;1;2;5)\,(1;2;2;2;2;2;2;3;4))\lower2pt{\Large{\color{teal}{➌}}}\to\{\#4\}\)

\(140=(1+4+0+1^3+4^3+0^3)*2\)

\(140\mathbf{\color{blue}{\;=\;}}[6^4][36^2]-34^2\mathbf{\color{blue}{\;=\;}}12^2-2^2\)

140.1

\(140\mathbf{\color{blue}{\;=\;}}\)(som van drie derdemachten)

\(\qquad~~~~\)References Sum of Three Cubes

\(\qquad~~~~\)Getallen van de vorm \(~9m+4~\) of \(~9m+5~\) kunnen nooit als som van drie derdemachten geschreven worden.

\(\qquad~~~~\)In dit geval is \(m=15~~(+5)\).

\(140\mathbf{\color{blue}{\;=\;}}\)(som van vier derdemachten)

\(\qquad~~~~(z\gt1000)\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-1)^3+2^3+2^3+5^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-4)^3+(-7)^3+(-13)^3+14^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-1)^3+(-10)^3+(-19)^3+20^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{17^3+(-34)^3+(-37)^3+44^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{5^3+23^3+44^3+(-46)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{8^3+(-19)^3+(-46)^3+47^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{11^3+41^3+50^3+(-58)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-34)^3+(-34)^3+(-79)^3+83^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{47^3+(-67)^3+(-76)^3+86^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{20^3+(-31)^3+(-85)^3+86^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{50^3+(-67)^3+(-88)^3+95^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-31)^3+(-58)^3+(-100)^3+107^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-16)^3+(-31)^3+(-106)^3+107^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-31)^3+(-79)^3+(-127)^3+137^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-1)^3+104^3+116^3+(-139)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{71^3+80^3+122^3+(-139)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{29^3+(-121)^3+(-130)^3+158^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-31)^3+59^3+170^3+(-172)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-43)^3+95^3+176^3+(-184)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{50^3+(-61)^3+(-184)^3+185^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-55)^3+107^3+206^3+(-214)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{149^3+(-169)^3+(-220)^3+230^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-112)^3+(-115)^3+(-217)^3+236^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-91)^3+152^3+224^3+(-241)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{116^3+188^3+227^3+(-271)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-25)^3+158^3+269^3+(-286)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-31)^3+(-157)^3+(-277)^3+293^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-184)^3+(-205)^3+(-223)^3+296^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{5^3+(-262)^3+(-265)^3+332^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{98^3+(-109)^3+(-343)^3+344^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-169)^3+(-256)^3+(-334)^3+389^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{137^3+(-292)^3+(-340)^3+395^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-13)^3+224^3+392^3+(-415)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{194^3+269^3+359^3+(-418)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{260^3+(-277)^3+(-415)^3+422^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{344^3+(-382)^3+(-409)^3+437^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-145)^3+(-238)^3+(-406)^3+437^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{158^3+215^3+437^3+(-460)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{323^3+(-343)^3+(-466)^3+476^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-301)^3+350^3+464^3+(-487)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{140^3+407^3+413^3+(-520)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-262)^3+431^3+437^3+(-526)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{101^3+(-211)^3+(-523)^3+533^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-184)^3+386^3+467^3+(-535)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{155^3+(-391)^3+(-508)^3+572^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{71^3+(-310)^3+(-547)^3+578^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{83^3+446^3+473^3+(-580)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{110^3+155^3+578^3+(-583)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{95^3+251^3+623^3+(-637)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-115)^3+470^3+551^3+(-646)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-562)^3+593^3+659^3+(-682)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{470^3+479^3+488^3+(-691)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{347^3+(-604)^3+(-640)^3+761^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{125^3+(-457)^3+(-748)^3+800^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-289)^3+341^3+800^3+(-808)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{173^3+500^3+746^3+(-817)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{296^3+566^3+713^3+(-829)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{269^3+(-280)^3+(-910)^3+911^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{206^3+458^3+869^3+(-913)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{140^3+215^3+917^3+(-922)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-181)^3+(-373)^3+(-925)^3+947^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{536^3+563^3+830^3+(-967)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{209^3+(-754)^3+(-805)^3+980^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{542^3+578^3+845^3+(-985)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-169)^3+563^3+935^3+(-997)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-304)^3+(-382)^3+(-985)^3+1013^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{383^3+(-643)^3+(-964)^3+1034^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{533^3+(-688)^3+(-1000)^3+1055^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{(-13)^3+776^3+902^3+(-1063)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{137^3+779^3+944^3+(-1096)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{344^3+(-850)^3+(-967)^3+1139^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{623^3+854^3+869^3+(-1150)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{323^3+839^3+977^3+(-1159)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px green solid]{464^3+869^3+992^3+(-1201)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~(z\gt1000)\)

\(140\mathbf{\color{blue}{\;=\;}}\)(som van vijf vijfdemachten)

\(\qquad~~~~\bbox[3px,border:1px blue solid]{(-1)^5+(-3)^5+26^5+32^5+(-34)^5}\mathbf{\color{blue}{\;=\;}}(z\gt200)\)

140.2
\(140\) als resultaat met breuken waarin de cijfers van \(0\) tot \(9\) exact één keer voorkomen : (\(8\) oplossingen) :
\(257460/1839=273840/1956=415380/2967=461580/3297=\)
\(514920/3678=547680/3912=615720/4398=659820/4713=140\)
140.3

\(140\mathbf{\color{blue}{\;=\;}}7!/(3!*3!)\mathbf{\color{blue}{\;=\;}}7!/(6^2)\mathbf{\color{blue}{\;=\;}}5040/36\)

140.4

\(140\) is gelijk aan \(28\) maal de som van zijn cijfers : \(140=28*(1+4+0)\)
Andere getallen met dezelfde eigenschap zijn \(112,224,252,280,308,336,364,392,448,476\) en \(588\).
(OEIS A005349 - Harshad getallen)

140.5
Men moet \(140\) tot minimaal de \(95613\)ste macht verheffen opdat in de decimale expansie exact \(140\) \(140\)'s verschijnen.
Hier moet een hogere exponent gebruikt worden als normaal want een veelvoud van \(140\) produceert een sliert van
nullen achteraan die nooit een grondtal kunnen herbergen. Terloops : \(140\)\(^{95613}\) heeft een lengte van \(205198\) cijfers.
140.6

\(140^2\mathbf{\color{blue}{\;=\;}}24^3+76^2\mathbf{\color{blue}{\;=\;}}65^3-505^2\mathbf{\color{blue}{\;=\;}}84^2+112^2\mathbf{\color{blue}{\;=\;}}148^2-48^2\mathbf{\color{blue}{\;=\;}}149^2-51^2\mathbf{\color{blue}{\;=\;}}175^2-105^2\mathbf{\color{blue}{\;=\;}}203^2-147^2\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\;221^2-171^2\mathbf{\color{blue}{\;=\;}}265^2-[15^4][225]\mathbf{\color{blue}{\;=\;}}364^2-336^2\mathbf{\color{blue}{\;=\;}}500^2-480^2\mathbf{\color{blue}{\;=\;}}707^2-693^2\mathbf{\color{blue}{\;=\;}}985^2-975^2\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\;1085^2-105^3\mathbf{\color{blue}{\;=\;}}1229^2-1221^2\mathbf{\color{blue}{\;=\;}}2452^2-2448^2\mathbf{\color{blue}{\;=\;}}4901^2-4899^2\)

\(140^3\mathbf{\color{blue}{\;=\;}}119^3+1029^2\mathbf{\color{blue}{\;=\;}}329^3-5733^2\mathbf{\color{blue}{\;=\;}}1659^2-91^2\mathbf{\color{blue}{\;=\;}}1680^2-280^2\mathbf{\color{blue}{\;=\;}}1686^2-314^2\mathbf{\color{blue}{\;=\;}}1785^2-665^2\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\;1872^2-872^2\mathbf{\color{blue}{\;=\;}}1890^2-910^2\mathbf{\color{blue}{\;=\;}}2115^2-1315^2\mathbf{\color{blue}{\;=\;}}2142^2-1358^2\mathbf{\color{blue}{\;=\;}}2310^2-1610^2\mathbf{\color{blue}{\;=\;}}2343^2-1657^2\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\;2730^2-2170^2\mathbf{\color{blue}{\;=\;}}2994^2-2494^2\mathbf{\color{blue}{\;=\;}}3045^2-2555^2\mathbf{\color{blue}{\;=\;}}3630^2-3230^2\mathbf{\color{blue}{\;=\;}}3696^2-3304^2\mathbf{\color{blue}{\;=\;}}4095^2-3745^2\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\;5040^2-4760^2\mathbf{\color{blue}{\;=\;}}5613^2-5363^2\mathbf{\color{blue}{\;=\;}}6237^2-6013^2\mathbf{\color{blue}{\;=\;}}6960^2-6760^2\mathbf{\color{blue}{\;=\;}}7098^2-6902^2\mathbf{\color{blue}{\;=\;}}8655^2-8495^2\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\;\bbox[2px,border:1px brown dashed]{9870^2-9730^2}\)

140.7

Als som met de vier operatoren \(+-*\;/\)
\(140=(35+1)+(35-1)+(35*1)+(35/1)\)

140.8
\(140=9*8+7*6+5*4+3*2+1*0\) een pandigitale expressie. 140.9

\(\begin{align}140\mathbf{\color{blue}{\;=\;}}\left({\frac{6623}{5301}}\right)^3+\left({\frac{27397}{5301}}\right)^3\end{align}\)

(Integral Sum of Two Rational Cubes) (OEIS A020898) (OEIS A228499)

\((x^3+y^3)/z^3=n~\to~\) [x waarde] (OEIS A190356)  [y waarde] (OEIS A190580)  [z waarde] (OEIS A190581)

Kleinste positieve oplossingen \(~\to~\) [x waarde] (OEIS A254326)  [y waarde] (OEIS A254324)

140.10

Som Der Cijfers (\(sdc\)) van \(k^{\large{140}}\) is gelijk aan het grondtal \(k\). De triviale oplossingen \(0\) en \(1\) negerend vinden we :

\(\qquad\qquad~sdc\left(1270^{\large{140}}\right)=1270\qquad\qquad~sdc\left(2116^{\large{140}}\right)=2116\qquad\qquad~sdc\left(2178^{\large{140}}\right)=2178\)

\(\qquad\qquad~sdc\left(2214^{\large{140}}\right)=2214\)

140.11

Expressie met tweemaal de cijfers uit het getal \(140\) enkel met operatoren \(+,-,*,/,(),\)^^\(\)
\(140\mathbf{\color{blue}{\;=\;}}(1\)^^\(4\)^^\(0)+1*4*0\)

140.12

Als expressie met enkelcijferige toepassing, resp. van \(1\) tot \(9~~\) (met dank aan Inder. J. Taneja).
\(\qquad\qquad140=(11-1)*(11+1+1+1)\)
\(\qquad\qquad140=2*(2*(22+2)+22)\)
\(\qquad\qquad140=3+3^3+(333-3)/3\)
\(\qquad\qquad140=4*(4*(4+4)+4)-4\)
\(\qquad\qquad140=5*5*5+5+5+5\)
\(\qquad\qquad140=66+66+6+(6+6)/6\)
\(\qquad\qquad140=7*(7+7+7)-7\)
\(\qquad\qquad140=8*(8+8)+(88+8)/8\)
\(\qquad\qquad140=9+9+(999+99)/9\)

140.13

Met de cijfers van \(1\) tot \(9\) in stijgende en dalende volgorde (met dank aan Inder. J. Taneja) :
\(\qquad\qquad140=12+3+4+56+7*8+9\)
\(\qquad\qquad140=9*8+7*6+5*4+3+2+1\)

140.14

\(140\) is een harmonisch-delergetal.

De teller bevat het aantal delers van \(140\) ofwel \({\Large\sigma}(140)=12\).

De noemer is de harmonische reeks van de \(12\) delers i.e. de som van de reciproken van alle delers.

Als de teller gedeeld door de noemer een geheel getal is dan zeggen we dat \(140\) een harmonisch-delergetal is.

\({\Large\frac{12}{\frac{1}{1}+\frac{1}{2}+\frac{1}{4}+\frac{1}{5}+\frac{1}{7}+\frac{1}{10}+\frac{1}{14}+\frac{1}{20}+\frac{1}{28}+\frac{1}{35}+\frac{1}{70}+\frac{1}{140}}}=5\)

(Harmonisch-delergetal) (Harmonic divisor number) (OEIS A001599)

140.15
Het kleinste getal dat exact \(140\) delers heeft is \(181440=2^6*3^4*5*7\). (OEIS A005179) 140.16
Schakelaar
\(\mathbf[0\gets\to1000\mathbf]\)
Allemaal Getallen

\(\Huge\bbox[border:0]{⏮}\)

\(\Huge\bbox[border:0]{⯬}\)

\(\Huge\bbox[border:0]{⏴}\)

\(\Huge\bbox[border:0]{⏵}\)

\(\Huge\bbox[border:0]{⯮}\)

\(\Huge\bbox[border:0]{⏭}\)


\(140\)\(2^2*5*7\)\(12\)\(336\)
\(1,2,4,5,7,10,14,20,28,35,70,140\)
\(10001100_2\)\(214_8\)\(8\)C\(_{16}\)
   

Uit de collectie 'Allemaal Getallen' van Ir. Jos Heynderickx
Toevoegingen & Bewerking & Layout door Patrick De Geest (email)
Laatste update 25 juni 2025