\(119\mathbf{\color{blue}{\;=\;}}2+3+4+5+6+7+8+9+10+11+12+13+14+15\mathbf{\color{blue}{\;=\;}}14+15+16+17+18+19+20\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~59+60\) (som van opeenvolgende gehele getallen)

\(119\mathbf{\color{blue}{\;=\;}}11+13+15+17+19+21+23\) (som van opeenvolgende onpare getallen)

\(119\mathbf{\color{blue}{\;=\;}}7+11+13+17+19+23+29\mathbf{\color{blue}{\;=\;}}17+19+23+29+31\) (som van opeenvolgende priemgetallen)

\(119\mathbf{\color{blue}{\;=\;}}3+6+10+15+21+28+36\) (som van opeenvolgende driehoeksgetallengetallen)

\(119\mathbf{\color{blue}{\;=\;}}1*1!+2*2!+3*3!+4*4!\mathbf{\color{blue}{\;=\;}}5!-1\)

\(119=((1;1;6;9)\,(1;3;3;10)\,(2;3;5;9)\,(3;5;6;7))\lower2pt{\Large{\color{teal}{➋}}}\to\{\#4\}\)

\(119\mathbf{\color{blue}{\;=\;}}1^3+3^3+3^3+4^3\mathbf{\color{blue}{\;=\;}}((0;0;0;0;0;1;3;3;4)\,(0;1;1;1;2;3;3;3;3)\,(1;1;1;1;2;2;2;3;4))\lower2pt{\Large{\color{teal}{➌}}}\to\{\#3\}\)

\(119=11*9+(11+9)\)

\(119\mathbf{\color{blue}{\;=\;}}2^7-3^2\mathbf{\color{blue}{\;=\;}}12^2-5^2\mathbf{\color{blue}{\;=\;}}\bbox[2px,border:1px brown dashed]{60^2-59^2}\mathbf{\color{blue}{\;=\;}}386^2-53^3\)

119.1

\(119\mathbf{\color{blue}{\;=\;}}\)(som van drie derdemachten)

\(\qquad~~~~18\) oplossingen bekend

\(\qquad~~~~\)References Sum of Three Cubes

\(\qquad~~~~\bbox[3px,border:1px solid]{(-2)^3+(-6)^3+7^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{(-8)^3+(-14)^3+15^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{(-609)^3+(-2312)^3+2326^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{(-1673)^3+(-3677)^3+3789^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{39528^3+116839^3+(-118328)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{(-68313)^3+(-142202)^3+147274^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{239503^3+287799^3+(-334943)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{(-731105)^3+(-1027722)^3+1138648^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{78127^3+1465596^3+(-1465670)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{105747514^3+189275520^3+(-199694225)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{(-165503058)^3+(-262514258)^3+282829207^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{(-3143111357)^3+(-6006579603)^3+6280756279^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{4960252414^3+7085369047^3+(-7817457522)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{(-300438362)^3+(-8878721249)^3+8878835916^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{(-3160804626)^3+(-19005236801)^3+19034334616^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{1605866230303^3+(-12487775028090)^3+12478916841748^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{13256806780210^3+18067552593616^3+(-20187975936753)^3}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px solid]{60956988845095^3+114662071387632^3+(-120138918890324)^3}\mathbf{\color{blue}{\;=\;}}\)

\(119\mathbf{\color{blue}{\;=\;}}\)(som van vijf vijfdemachten)

\(\qquad~~~~\)(fully searched up to \(z=1000)\)

\(\qquad~~~~\)(oplossingen met vijf vijfcijfer_termen door Joe Wetherell)

\(\qquad~~~~\bbox[3px,border:1px blue solid]{(-3)^5+(-30)^5+33^5+41^5+(-42)^5}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px blue solid]{234^5+248^5+(-429)^5+(-499)^5+535^5}\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\bbox[3px,border:1px blue solid]{(-13607)^5+(-31615)^5+32621^5+34556^5+(-35216)^5}\)

\(\qquad~~~~\bbox[3px,border:1px blue solid]{14441^5+(-26602)^5+(-42210)^5+(-43461)^5+49651^5}\)

119.2

\(119^2\mathbf{\color{blue}{\;=\;}}13^4-120^2\mathbf{\color{blue}{\;=\;}}21^3+70^2\mathbf{\color{blue}{\;=\;}}56^2+105^2\mathbf{\color{blue}{\;=\;}}169^2-120^2\mathbf{\color{blue}{\;=\;}}425^2-408^2\mathbf{\color{blue}{\;=\;}}1015^2-1008^2\mathbf{\color{blue}{\;=\;}}\)

\(\qquad~~~~\,\,1037^2-102^3\mathbf{\color{blue}{\;=\;}}7081^2-7080^2\)

\(119^3\mathbf{\color{blue}{\;=\;}}140^3-1029^2\mathbf{\color{blue}{\;=\;}}1428^2-595^2\mathbf{\color{blue}{\;=\;}}2628^2-2285^2\mathbf{\color{blue}{\;=\;}}3060^2-2771^2\mathbf{\color{blue}{\;=\;}}\bbox[2px,border:1px brown dashed]{7140^2-7021^2}\)

119.3
Zowel \(119\) als de permutaties van de cijfers (\(191\) en \(911\)) zijn alle drie priemgetallen. 119.4
\(119\) als resultaat met breuken waarin de cijfers van \(0\) tot \(9\) exact één keer voorkomen : (\(9\) oplossingen) :
\(510867/4293=519078/4362=804321/6759=821457/6903=836451/7029=\) \(893214/7506=931056/7824=964257/8103=970326/8154=119\)
119.5
Men moet \(119\) tot minimaal de \(42444\)ste macht verheffen opdat in de decimale expansie exact \(119\) \(119\)'s verschijnen.
Terloops : \(119\)\(^{42444}\) is \(88095\) cijfers lang. Noteer dat \(42444\) en \(88095\) exact één keer voorkomen in de decimale expansie.
119.6

De eerste keer dat er \(119\) opeenvolgende samengestelde getallen voorkomen gebeurt tussen de priemgetallen \(1895359\)
en \(1895479\) met aldus een priemkloof van \(120\,.~~\) (OEIS A000101.pdf)

119.7

\(b\mathbf{\color{blue}{\;=\;}}119\to b\)\(^{4}\)\(+b\)\(^{8}\)\(+b\)\(^{2}\)\(+b\)\(^{6}\)\(+b\)\(^{0}\)\(+b\)\(^{0}\)\(+b\)\(^{6}\)\(+b\)\(^{0}\)\(+b\)\(^{7}\)\(+b\)\(^{5}\)\(+b\)\(^{5}\)\(+b\)\(^{9}\)\(+b\)\(^{2}\)\(+b\)\(^{3}\)\(+b\)\(^{0}\)\(+b\)\(^{3}\)\(+b\)\(^{1}\)\(+b\)\(^{2}\)\(+b\)\(^{3}\)\(\mathbf{\color{blue}{\;=\;}}4826006075592303123~~\)
(OEIS A236067)

119.8

(multigrades) \(119\to1375298099\to\)

\begin{align} 3^1+54^1+62^1&=24^1+28^1+67^1\\ 3^5+54^5+62^5&=24^5+28^5+67^5 \end{align}

119.9

 ○–○–○ 

\(119^2=14161~~\) en \(~~1+prime(41)-61=119\)
\(119^3=1685159~~\) en \(~~?=119\)
\(119^4=200533921~~\) en \(~~?=119\)
\(119^5=23863536599~~\) en \(~~?=119\)
\(119^6=2839760855281~~\) en \(~~?=119\)
\(119^7=337931541778439~~\) en \(~~?=119\)
\(119^8=40213853471634241~~\) en \(~~?=119\)
\(119^9=4785448563124474679~~\) en \(~~?=119\)
119.10

Som Der Cijfers (\(sdc\)) van \(k^{\large{119}}\) is gelijk aan het grondtal \(k\). De triviale oplossingen \(0\) en \(1\) negerend vinden we :

\(\qquad\qquad~sdc\left(1665^{\large{119}}\right)=1665\qquad\qquad~sdc\left(1673^{\large{119}}\right)=1673\)

119.11

Expressie met tweemaal de cijfers uit het getal \(119\)
\(119\mathbf{\color{blue}{\;=\;}}(1\)^^\(1\)^^\(9)*1*1\)^\(9\mathbf{\color{blue}{\;=\;}}(1\)^^\(1)*9+(1\)^^\(1)+9\)

119.12

Als expressie met enkelcijferige toepassing, resp. van \(1\) tot \(9~~\) (met dank aan Inder. J. Taneja).
\(\qquad\qquad119\mathbf{\color{blue}{\;=\;}}11*11-1-1\mathbf{\color{blue}{\;=\;}}11^{(1+1)}-1-1\)
\(\qquad\qquad119\mathbf{\color{blue}{\;=\;}}(22/2)^2-2\)
\(\qquad\qquad119\mathbf{\color{blue}{\;=\;}}3*3+(333-3)/3\)
\(\qquad\qquad119\mathbf{\color{blue}{\;=\;}}4+4+444/4\)
\(\qquad\qquad119\mathbf{\color{blue}{\;=\;}}5*5*5-5-5/5\)
\(\qquad\qquad119\mathbf{\color{blue}{\;=\;}}6+(666+6+6)/6\)
\(\qquad\qquad119\mathbf{\color{blue}{\;=\;}}7*7+77-7\)
\(\qquad\qquad119\mathbf{\color{blue}{\;=\;}}8+888/8\)
\(\qquad\qquad119\mathbf{\color{blue}{\;=\;}}9+(999-9)/9\)

119.13

Met de cijfers van \(1\) tot \(9\) in stijgende en dalende volgorde (met dank aan Inder. J. Taneja) :
\(\qquad\qquad119=1+2+3+4*5+6+78+9\)
\(\qquad\qquad119=9*8+7+6*5+4+3+2+1\)

119.14

Som der reciproken van partitiegetallen van \(119\) is \(1\) op \(314\) (driehonderdveertien) wijzen.

Negen partities hebben unieke termen.

\(~~(1)~~\bbox[navajowhite,3px,border:1px solid]{119=2+3+16+20+30+48}~~\) en \(~~1={\Large\frac{1}{2}}+{\Large\frac{1}{3}}+{\Large\frac{1}{16}}+{\Large\frac{1}{20}}+{\Large\frac{1}{30}}+{\Large\frac{1}{48}}\)

\(~~(2)~~\bbox[navajowhite,3px,border:1px solid]{119=2+4+7+16+42+48}~~\) en \(~~1={\Large\frac{1}{2}}+{\Large\frac{1}{4}}+{\Large\frac{1}{7}}+{\Large\frac{1}{16}}+{\Large\frac{1}{42}}+{\Large\frac{1}{48}}\)

\(~~(6)~~\bbox[navajowhite,3px,border:1px solid]{119=2+4+14+15+21+28+35}~~\) en \(~~1={\Large\frac{1}{2}}+{\Large\frac{1}{4}}+{\Large\frac{1}{14}}+{\Large\frac{1}{15}}+{\Large\frac{1}{21}}+{\Large\frac{1}{28}}+{\Large\frac{1}{35}}\)

\(~~(7)~~\bbox[navajowhite,3px,border:1px solid]{119=2+5+8+15+21+28+40}~~\) en \(~~1={\Large\frac{1}{2}}+{\Large\frac{1}{5}}+{\Large\frac{1}{8}}+{\Large\frac{1}{15}}+{\Large\frac{1}{21}}+{\Large\frac{1}{28}}+{\Large\frac{1}{40}}\)

\((10)~~\bbox[navajowhite,3px,border:1px solid]{119=2+6+7+12+20+30+42}~~\) en \(~~1={\Large\frac{1}{2}}+{\Large\frac{1}{6}}+{\Large\frac{1}{7}}+{\Large\frac{1}{12}}+{\Large\frac{1}{20}}+{\Large\frac{1}{30}}+{\Large\frac{1}{42}}\)

\((13)~~\bbox[navajowhite,3px,border:1px solid]{119=2+7+8+10+15+21+56}~~\) en \(~~1={\Large\frac{1}{2}}+{\Large\frac{1}{7}}+{\Large\frac{1}{8}}+{\Large\frac{1}{10}}+{\Large\frac{1}{15}}+{\Large\frac{1}{21}}+{\Large\frac{1}{56}}\)

\((25)~~\bbox[navajowhite,3px,border:1px solid]{119=3+4+5+12+15+20+60}~~\) en \(~~1={\Large\frac{1}{3}}+{\Large\frac{1}{4}}+{\Large\frac{1}{5}}+{\Large\frac{1}{12}}+{\Large\frac{1}{15}}+{\Large\frac{1}{20}}+{\Large\frac{1}{60}}\)

\((26)~~\bbox[navajowhite,3px,border:1px solid]{119=3+4+6+8+14+28+56}~~\) en \(~~1={\Large\frac{1}{3}}+{\Large\frac{1}{4}}+{\Large\frac{1}{6}}+{\Large\frac{1}{8}}+{\Large\frac{1}{14}}+{\Large\frac{1}{28}}+{\Large\frac{1}{56}}\)

\((63)~~\bbox[navajowhite,3px,border:1px solid]{119=3+5+8+9+10+15+24+45}~~\) en \(~~1={\Large\frac{1}{3}}+{\Large\frac{1}{5}}+{\Large\frac{1}{8}}+{\Large\frac{1}{9}}+{\Large\frac{1}{10}}+{\Large\frac{1}{15}}+{\Large\frac{1}{24}}+{\Large\frac{1}{45}}\)

(OEIS A125726)

119.15
Het kleinste getal dat exact \(119\) delers heeft is \(47775744=2^{16}*3^6\). (OEIS A005179) 119.16

(multigrades) \(119\to1375298099~~\text{(\(+\,28^5\) is pannumerisch \(1392508467~\))}\to\)

\begin{align} 3^1+{\color{red}{28}}^1+54^1+62^1&=24^1+{\color{red}{28}}^1+28^1+67^1\\ 3^5+{\color{red}{28}}^5+54^5+62^5&=24^5+{\color{red}{28}}^5+28^5+67^5 \end{align}

119.17
\(119\) is het aantal diagonalen in een zeventienhoek \(~~(n*(n-3)/2~\) met \(~n=17)\). (OEIS A000096) 119.18
Schakelaar
\(\mathbf[0\gets\to1000\mathbf]\)
Allemaal Getallen


\(119\)\(7*17\)\(4\)\(144=12^2\)
\(1,7,17,119\)
\(1110111_2\)\(167_8\)\(77_{16}\)
   

Uit de collectie 'Allemaal Getallen' van Ir. Jos Heynderickx
Toevoegingen & Bewerking & Layout door Patrick De Geest (email)
Laatste update 23 oktober 2025