\(\qquad~~~~\bbox[3px,border:1px green solid]{(-1)^3+(-4)^3+(-7)^3+8^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{5^3+11^3+14^3+(-16)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{2^3+14^3+20^3+(-22)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-4)^3+(-22)^3+(-28)^3+32^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{17^3+(-25)^3+(-28)^3+32^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{14^3+(-19)^3+(-37)^3+38^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{11^3+(-43)^3+(-46)^3+56^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-16)^3+32^3+68^3+(-70)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{5^3+(-28)^3+(-85)^3+86^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{41^3+(-46)^3+(-97)^3+98^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{5^3+(-49)^3+(-97)^3+101^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{77^3+(-88)^3+(-100)^3+107^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-31)^3+47^3+110^3+(-112)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{20^3+83^3+98^3+(-115)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-10)^3+(-79)^3+(-106)^3+119^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-70)^3+104^3+104^3+(-124)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{50^3+62^3+119^3+(-127)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-22)^3+(-88)^3+(-112)^3+128^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{44^3+68^3+125^3+(-133)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{20^3+(-43)^3+(-154)^3+155^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{26^3+86^3+161^3+(-169)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-4)^3+56^3+170^3+(-172)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{119^3+(-127)^3+(-172)^3+176^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{89^3+(-124)^3+(-169)^3+182^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-85)^3+104^3+182^3+(-187)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{98^3+134^3+152^3+(-190)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-130)^3+164^3+182^3+(-202)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-4)^3+98^3+194^3+(-202)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-10)^3+(-154)^3+(-172)^3+206^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{140^3+146^3+158^3+(-214)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-76)^3+(-100)^3+(-214)^3+224^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{125^3+155^3+227^3+(-259)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-4)^3+116^3+251^3+(-259)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{41^3+194^3+224^3+(-265)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{59^3+(-187)^3+(-232)^3+266^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-109)^3+(-124)^3+(-280)^3+293^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{38^3+(-205)^3+(-259)^3+296^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{77^3+203^3+287^3+(-319)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-64)^3+(-106)^3+(-346)^3+350^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{38^3+281^3+287^3+(-358)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{110^3+(-238)^3+(-328)^3+362^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{128^3+(-154)^3+(-358)^3+362^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-46)^3+98^3+374^3+(-376)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-133)^3+149^3+398^3+(-400)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-52)^3+104^3+404^3+(-406)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{77^3+185^3+395^3+(-409)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-46)^3+(-187)^3+(-406)^3+419^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{14^3+194^3+410^3+(-424)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{62^3+(-262)^3+(-400)^3+434^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{227^3+(-259)^3+(-430)^3+440^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{5^3+287^3+401^3+(-445)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{134^3+(-316)^3+(-406)^3+458^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-28)^3+(-85)^3+(-460)^3+461^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{197^3+203^3+440^3+(-466)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{92^3+164^3+461^3+(-469)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-64)^3+176^3+461^3+(-469)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{122^3+131^3+518^3+(-523)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-70)^3+356^3+488^3+(-544)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-16)^3+(-154)^3+(-550)^3+554^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-259)^3+(-352)^3+(-517)^3+584^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{332^3+(-436)^3+(-556)^3+602^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{527^3+(-550)^3+(-583)^3+602^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-358)^3+380^3+608^3+(-616)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{134^3+(-259)^3+(-613)^3+626^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-220)^3+236^3+644^3+(-646)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{71^3+182^3+650^3+(-655)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-67)^3+(-100)^3+(-658)^3+659^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{14^3+362^3+626^3+(-664)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{296^3+(-301)^3+(-667)^3+668^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{89^3+308^3+647^3+(-670)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-196)^3+470^3+593^3+(-673)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-22)^3+224^3+680^3+(-688)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-256)^3+(-406)^3+(-628)^3+692^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{392^3+(-496)^3+(-646)^3+692^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-136)^3+362^3+668^3+(-700)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-112)^3+(-382)^3+(-670)^3+710^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{212^3+(-322)^3+(-697)^3+713^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-241)^3+560^3+593^3+(-718)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{326^3+467^3+644^3+(-739)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-46)^3+515^3+644^3+(-739)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{230^3+362^3+704^3+(-742)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-280)^3+506^3+692^3+(-760)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{14^3+(-304)^3+(-757)^3+773^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-154)^3+266^3+791^3+(-799)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-22)^3+392^3+776^3+(-808)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-19)^3+(-589)^3+(-700)^3+818^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-13)^3+(-403)^3+(-784)^3+818^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{116^3+248^3+833^3+(-841)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{173^3+419^3+812^3+(-850)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-508)^3+(-535)^3+(-697)^3+854^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-322)^3+(-625)^3+(-706)^3+857^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{212^3+524^3+794^3+(-868)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-436)^3+455^3+866^3+(-871)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-463)^3+(-643)^3+(-673)^3+875^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{14^3+(-544)^3+(-802)^3+878^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-502)^3+584^3+854^3+(-886)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-4)^3+(-574)^3+(-802)^3+890^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-445)^3+(-637)^3+(-715)^3+893^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{698^3+(-778)^3+(-838)^3+896^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{482^3+(-514)^3+(-886)^3+896^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-43)^3+410^3+875^3+(-904)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-136)^3+245^3+899^3+(-904)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-454)^3+(-658)^3+(-718)^3+908^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-154)^3+206^3+920^3+(-922)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{728^3+(-739)^3+(-916)^3+923^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-391)^3+734^3+791^3+(-940)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{140^3+(-358)^3+(-940)^3+956^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-274)^3+(-742)^3+(-844)^3+1010^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{20^3+(-385)^3+(-991)^3+1010^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{236^3+(-784)^3+(-886)^3+1052^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-217)^3+(-727)^3+(-940)^3+1070^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-22)^3+(-850)^3+(-904)^3+1106^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-721)^3+(-814)^3+(-922)^3+1193^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~(z\gt1000)\)