Here is how I solve one of your problems analytically using
sequence algebra:
Problem stated: 312 x 221 = 68952
213 x 122 = 25986
-------------------------------------------------------------
Solution by Maple V R 3: (all lines below can be tested):
> A:=a(1)/x^1+a(2)/x^2+a(3)/x^3;
> B:=b(1)/x^1+b(2)/x^2+b(3)/x^3;
>AB:=expand(A*B);
>AA:=a(3)/x^1+a(2)/x^2+a(1)/x^3;
>BB:=b(3)/x^1+b(2)/x^2+b(1)/x^3;
>AABB:=expand(AA*BB);
>a(1):=3;
>a(2):=1;
>a(3):=2;
>b(1):=2;
>b(2):=2;
>b(3):=1;
-------------------------------------------------------------
Evaluation: You will find:
>AB;
6/x^1+8/x^2+9/x^3+5/x^4+2/x^5
>AABB;
2/x^1+5/x^2+9/x^3+8/x^4+6/x^5
-------------------------------------------------------------
Further: So long as a(1) to a(3) and b(1) to b(3) are
kept below 3, you should get all your reversed palindromes
easily. Loss of palindromes will occur if any digits in
AB or AABB exceed 10 due to carry overs operations.
The limit seems to be 9 digits for the palindromes at which
point all a(1) to a(5) and b(1) to b(5) must equal 1.
There must be an analytical method from the above to
handle other variations, e.g., to solve a set of linear
equations in case digits exceed 10. Hope your readers
will find an improvement. Huen Y.K. (CAHRC).