\(\qquad~~~~\bbox[3px,border:1px green solid]{1^3+(-2)^3+7^3+7^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{4^3+(-11)^3+(-17)^3+19^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{1^3+13^3+22^3+(-23)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{13^3+25^3+25^3+(-32)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-8)^3+(-41)^3+(-50)^3+58^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{28^3+(-35)^3+(-59)^3+61^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-29)^3+(-65)^3+(-68)^3+85^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{4^3+(-50)^3+(-89)^3+94^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{19^3+31^3+109^3+(-110)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-17)^3+(-44)^3+(-122)^3+124^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{43^3+(-101)^3+(-128)^3+145^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{7^3+112^3+163^3+(-179)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{34^3+130^3+160^3+(-185)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-113)^3+136^3+184^3+(-194)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{61^3+151^3+163^3+(-200)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{37^3+142^3+199^3+(-221)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{61^3+(-131)^3+(-242)^3+253^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-20)^3+136^3+247^3+(-260)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-137)^3+184^3+268^3+(-284)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-200)^3+232^3+271^3+(-290)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{22^3+(-83)^3+(-305)^3+307^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-68)^3+199^3+286^3+(-314)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{148^3+(-242)^3+(-305)^3+340^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{16^3+202^3+319^3+(-344)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-83)^3+250^3+307^3+(-353)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-20)^3+(-233)^3+(-347)^3+379^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{103^3+(-170)^3+(-395)^3+403^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-137)^3+292^3+352^3+(-404)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{235^3+(-320)^3+(-365)^3+409^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{214^3+(-248)^3+(-401)^3+412^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-32)^3+82^3+415^3+(-416)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{22^3+(-296)^3+(-377)^3+430^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-188)^3+289^3+397^3+(-431)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{139^3+199^3+421^3+(-440)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{19^3+(-281)^3+(-404)^3+445^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{106^3+295^3+418^3+(-464)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{250^3+325^3+373^3+(-467)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{253^3+(-260)^3+(-479)^3+481^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{223^3+301^3+427^3+(-488)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{19^3+142^3+487^3+(-491)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{307^3+(-416)^3+(-425)^3+493^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{49^3+286^3+463^3+(-497)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-164)^3+334^3+448^3+(-497)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{175^3+(-224)^3+(-491)^3+499^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{439^3+(-476)^3+(-476)^3+508^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-143)^3+(-200)^3+(-503)^3+517^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-137)^3+(-206)^3+(-512)^3+526^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{334^3+(-425)^3+(-488)^3+538^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{250^3+304^3+487^3+(-542)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{31^3+304^3+508^3+(-542)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{166^3+(-377)^3+(-482)^3+544^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{82^3+340^3+496^3+(-545)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-191)^3+(-377)^3+(-473)^3+550^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{163^3+418^3+457^3+(-557)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{175^3+259^3+538^3+(-563)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{46^3+304^3+535^3+(-566)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-281)^3+(-434)^3+(-440)^3+574^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-179)^3+304^3+571^3+(-593)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{199^3+(-269)^3+(-587)^3+598^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{175^3+(-242)^3+(-602)^3+610^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-197)^3+(-242)^3+(-593)^3+613^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{28^3+(-452)^3+(-521)^3+616^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-17)^3+262^3+604^3+(-620)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{232^3+(-305)^3+(-608)^3+622^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{157^3+169^3+640^3+(-647)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-218)^3+346^3+631^3+(-656)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-2)^3+331^3+643^3+(-671)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-173)^3+187^3+673^3+(-674)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{70^3+262^3+679^3+(-692)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-539)^3+574^3+691^3+(-713)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{46^3+247^3+706^3+(-716)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{25^3+115^3+715^3+(-716)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{4^3+(-233)^3+(-722)^3+730^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-32)^3+(-317)^3+(-719)^3+739^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-281)^3+(-335)^3+(-737)^3+772^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-209)^3+448^3+742^3+(-788)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{355^3+(-563)^3+(-722)^3+799^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-302)^3+(-332)^3+(-764)^3+799^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-215)^3+(-293)^3+(-821)^3+838^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{235^3+628^3+691^3+(-839)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-488)^3+538^3+823^3+(-842)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-332)^3+(-434)^3+(-788)^3+847^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-440)^3+(-545)^3+(-716)^3+850^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{265^3+(-311)^3+(-872)^3+877^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-167)^3+691^3+715^3+(-884)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{415^3+(-554)^3+(-842)^3+886^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-446)^3+(-617)^3+(-746)^3+904^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{184^3+592^3+808^3+(-905)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-188)^3+604^3+808^3+(-905)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{1^3+271^3+970^3+(-977)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-590)^3+(-641)^3+(-782)^3+982^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-209)^3+730^3+850^3+(-998)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-404)^3+538^3+967^3+(-998)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-578)^3+(-683)^3+(-839)^3+1033^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-521)^3+682^3+976^3+(-1034)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-524)^3+(-590)^3+(-929)^3+1048^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{370^3+655^3+937^3+(-1049)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-62)^3+757^3+937^3+(-1079)^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~\bbox[3px,border:1px green solid]{(-5)^3+(-830)^3+(-995)^3+1159^3}\mathbf{\color{blue}{\;=\;}}\)
\(\qquad~~~~(z\gt1000)\)